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 Principles of and Current Approaches to Indirect 

Risk Estimation 

 Variation in most human traits and diseases are now 
viewed as having a genetic component. However, in most 
human inherited diseases, the biochemical defects are 
unknown. In other words, the genetic loci causing the 
disease are not known. This situation requires genomic 
screening to localize the gene or genes of interest.

  Between 1980 and mid-2000, a process known as posi-
tional cloning or gene mapping by means of linkage anal-
ysis was predominantly used to isolate the genes associ-
ated with specific diseases. Many genes were identified for 
Mendelian diseases, where a single highly penetrant gene 
effect results in characteristic and well-defined transmis-
sion of the disease within a family. Examples of such dis-
eases for which the genes were identified include Hun-
tington’s disease  [1, 2] , Duchenne muscular dystrophy  [3] , 
cystic fibrosis  [4–6] , and neurofibromatosis type 1  [7] .

  The goal of linkage analysis is to localize a disease or 
trait locus (T) associated with a given disease. Consider a 
nuclear family with parents and an affected offspring. A 
marker locus (M) (a DNA nucleotide or sequence of nucle-
otides that is known to have multiple alleles in the popu-
lation, but, unlike a trait locus, it is not necessarily 
associated with the expression of a phenotype) with a 
known location in the genome is genotyped in the nuclear 
family. If T and M   are unlinked (i.e. either sufficiently far 
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 Abstract 

 The number of genetic factors associated with common hu-
man traits and disease is increasing rapidly, and the general 
public is utilizing affordable, direct-to-consumer genetic 
tests. The results of these tests are often in the public do-
main. A combination of factors has increased the potential 
for the indirect estimation of an individual’s risk for a par-
ticular trait. Here we explain the basic principals underlying 
risk estimation which allowed us to test the ability to make 
an indirect risk estimation from genetic data by imputing Dr. 
James Watson’s redacted apolipoprotein E   gene  (APOE)  in-
formation. The principles underlying risk prediction from ge-
netic data have been well known and applied for many de-
cades, however, the recent increase in genomic knowledge, 
and advances in mathematical and statistical techniques 
and computational power, make it relatively easy to make an 
accurate but indirect estimation of risk. There is a current 
hazard for indirect risk estimation that is relevant not only to 
the subject but also to individuals related to the subject; this 
risk will likely increase as more detailed genomic data and 
better computational tools become available. 
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apart on the same chromosome or on different chromo-
somes), alleles from both loci segregate independently dur-
ing meiosis. Therefore, they will be transmitted indepen-
dently from parents to affected offspring. However, if T 
and M are linked (i.e. close together on the same chromo-
some with recombination), the segregation of alleles from 
both loci during meiosis is not independent: instead, a cer-
tain allele from the T will tend to segregate jointly with a 
certain allele from the M within the family. It is this co-
segregation of trait and marker alleles from parents to af-
fected offspring that we aim to detect with  a linkage test 
statistic. The more consistent this pattern  is across many 
meiotic divisions (i.e. parent-offspring transmissions), the 
lower the recombination fraction between the 2 loci (i.e. 
the closer T is to M) and, as a result, the stronger the evi-
dence for linkage provided by a linkage test.

   Figure 1  shows a completely dominant T (i.e. if you 
have a copy of the causative mutation, you always express 
the trait) and 4 markers segregating in a hypothetical nu-
clear family. Child 1 inherited 3 marker alleles of haplo-
type 1 {M 5 , M 9 , M 13 } and 1 allele of haplotype 2 {M 2 } from 
his father, indicating a recombination occurred between 
the 1st and 2nd marker; while he inherited 2 alleles of 
haplotype 1 {M 3 , M 7 } and 2 alleles of haplotype 2 {M 12 , 
M 16 } from his mother, indicating a recombination oc-
curred between the 2nd and 3rd marker. From her father, 
child 2 inherited 2 alleles of haplotype 1 {M 1 , M 5 } and 2 
alleles of haplotype 2 {M 10 , M 14 }, indicating a recombina-
tion between the 2nd and 3rd marker; while she inherited 
all 4 alleles of haplotype 2 {M 4 , M 8 , M 12 , M 16 } from her 
mother. From his father, child 3 inherited 2 alleles of hap-

lotype 1 {M 1 , M 5 } and 2 alleles of haplotype 2 {M 10 , M 14 }, 
indicating a recombination between the 2nd and 3rd 
marker; while he inherited all 4 alleles of haplotype 1 
from his mother {M 3 , M 7 , M 11 , M 15 }.

  In this example, although the precise location of recom-
bination between the linkage markers remains unknown, 
careful examination of the haplotypes each child inherited 
from the father with respect to disease status allows the T 
to be mapped. Briefly, the recombination observed in child 
1 requires that T lies somewhere to the right of the 1st 
marker; the recombination in child 2 requires T to lie 
somewhere to the left of the 3rd marker; while the recom-
bination in child 3 requires T to lie anywhere except be-
tween the 1st and 2nd marker. By process of elimination, 
the T must lie between the 2nd and 3rd marker.

  Although the rate of meiotic recombination varies 
across the genome, all of the approximately 3 billion DNA 
base-pairs of the human genome can be efficiently 
screened for linkage using approximately 400 highly 
polymorphic microsatellite markers (DNA sequence that 
contains mono-, di-, tri-, or tetra-nucleotide tandem re-
peats, with different numbers of repeats coded as differ-
ent alleles) or approximately 6,000 single nucleotide poly-
morphisms (SNPs).

  Once significant linkage is found to a particular re-
gion, which is typically 10–20 million base-pairs (Mb) in 
size, it is further examined (fine-mapped) by testing a 
denser set of markers, including plausible causative muta-
tions within known genes across the region. In addition 
to testing the fine-mapping markers for stronger evidence 
for linkage, they are also tested for association to the trait.
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  Fig. 1.  Segregation of a completely domi-
nant trait locus (causative mutation) and 4 
markers in a nuclear family. Square sym-
bols represent males, round symbols rep-
resent females; solid symbols represent af-
fected individuals and open symbols rep-
resent unaffected individuals. The set of 
alleles (haplotypes) for each individual are 
represented by the shaded bars under each 
symbol. 
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  Unlike genetic linkage studies, association (also called 
linkage disequilibrium (LD)) studies typically do not in-
vestigate familial inheritance patterns (although family-
based association designs exist). Instead, researchers test 
whether a particular allele (polymorphism) is correlated 
with a particular trait in a population sample. For exam-
ple, whether or not a particular allele occurs at a higher 
frequency among disease (case) individuals than in non-
disease (control) individuals.

   Figure 2  demonstrates how, through successive gen-
erations, recombination will cause the T to be separated 
from the specific alleles of its original (ancestral) haplo-
type. Particular DNA variants that remain together on 
ancestral haplotypes are said to be in LD. It is LD that 
provides the genetic basis for most association studies.

  If a gene is primarily involved in causing a disease, 
then alleles of that gene will occur more frequently in 
individuals suffering from the disorder than in those 
without the disorder. A positive disease-marker asso-
ciation occurs when an allele (M 1 ) of a DNA marker oc-
curs more frequently in sufferers than in nonsufferers 
and can arise for 3 reasons: if allele M 1  is actually the 
cause of the disease ( fig. 3 A); allele M 1  does not cause 
the disease, but is in LD with the actual cause ( fig. 3 B); 
and as an artefact of population admixture, resulting in 
a false positive. These false positives occur in a mixed 
population; any trait present at a high frequency in an 
ethnic group will show positive association with any

allele that also happens to be more common in that 
group  [8] .

   Figure 4  demonstrates how comparing marker allele 
frequencies in a sample of cases to allele frequencies in a 
sample of controls (i.e. a case-control association study) 
hopes to detect an overrepresentation of a particular al-
lele. In this example, the increased frequency of allele M 1  
in the cases (0.67) compared to the controls (0.50) indi-
cates that allele M 1  is associated with an increased risk for 
the disease. The relative risk (RR) for M 1  is 0.67/0.5 = 1.34, 
while the odds ratio (OR) is (0.67/0.33)/(0.5/0.5) = 2.03.

  Although linkage mapping has been highly successful 
for many Mendelian traits, the vast majority of common 
human genetic traits are not due to a single gene; rather 
they are due to many genes or genetic variations (poly-
genic variation), often interacting with environmental 
factors (thus they are referred to as complex traits). This 
genetic (locus) heterogeneity, where different combina-
tions of genetic variation (loci) result in the same pheno-
type, makes gene mapping by means of linkage analysis 
extremely difficult for common human complex traits, as 
no one marker will segregate perfectly with affection sta-
tus within a family or group of families.

  The success of linkage mapping in complex traits had 
been further hampered by the difficulty in collecting 
enough useful families for a particular trait to provide 
sufficient power to detect linkage. That is, because only a 
subset of families are likely to show segregation between 
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  Fig. 2.  Basis of association studies. 
Through successive generations, recombi-
nation will cause the T to be separated 
from the specific alleles of its original hap-
lotype. Adapted from  [28] . 
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a particular linkage marker and phenotype, the number 
of families required is directly proportional to the num-
ber of genetic loci underlying the trait. Furthermore, even 
if one was lucky enough to detect significant linkage, 
fine-mapping across the implicated region in sufficiently 
large cohorts (to account for genetic heterogeneity) was 
an extremely expensive and lengthy process. 

 Fortunately, the completion of the human genome proj-
ect in 2003  [9]  and the International HapMap Project in 
2005  [10] , together with advances in genotyping technol-
ogy, made it possible to screen the human genome’s ap-
proximately 2.4 million (identified by the HapMap project) 
common SNPs (minor allele frequency, MAF  1  0.01) for 
association. Genome-wide association (GWA) studies take 
advantage of the SNP organization along chromosomes, 
the haplotype structure, to identify sets of highly corre-
lated SNPs (i.e. in strong LD) that can be efficiently tested 
for association with a trait using a subset of so-called tag-
SNPs. Most GWA studies have tested approximately 

300,000 to 1,000,000 common tagSNPs genotyped in 
many thousands of individuals. Since the first publication 
in 2005, as of December 2011, more than 1,100 human 
GWA publications have examined well over 230 traits, 
finding over 6,750 genome-wide significant SNP associa-
tions and approximately 600 unique disease/trait associa-
tions (see http://www.genome.gov/gwastudies/ and  [11] ).

  The scatter plot in  figure 5  displays results from a 
GWA study, termed a Manhattan plot. Here the ‒log 10  of 
the p values generated by the association analysis, using 
for instance  �  2  tests, is plotted against chromosomal loca-
tion, allowing interesting association signals to be clearly 
seen against background signals. The dashed and dotted 
lines represent the genome-wide  significant  and  sugges-
tive  association thresholds of p  !  5  !  10 –8  and p  !  1  !  
10 –5 , respectively. The plot in  figure 5  indicates that ge-
nome-wide significant associations were observed on 
chromosomes 7 and 17, and at least 12 independent ge-
nome-wide suggestive associations were observed.

  Although the typical effect size of the risk-related 
SNPs identified through GWA studies is relatively small 
(OR = 1.1–1.2), the associated SNPs nonetheless offer cru-
cial insight into the biological pathways and mechanisms 
underlying human complex traits. Moreover, it is not 
necessary to know all the causal mutations affecting a 
trait in order to generate a reliable prediction of an indi-
vidual’s risk, and in fact, the first novel statistical meth-
ods that summarize an individual’s polygenic risk using 
genome-wide data were developed some 5 years ago  [12] .

  It is also important to appreciate that while the num-
ber of loci identified for many traits are still in the single 
digits, more loci will be identified as more GWA studies 
are performed. That is, while an individual, well-de-
signed GWA study has only low power to detect  all  un-
derlying loci, it has sufficient power to detect  some  loci. 

Haplotype

A B

Direct association Indirect association

  Fig. 3.  Testing SNPs for association by direct and indirect meth-
ods. In panel  A , the causative mutation is genotyped and tested 
directly for association with a trait. For example, a nonsynony-
mous variation – a mutation that alters the amino acid sequence 
of a protein (solid diamond) – in a biologically plausible gene 

(black rectangle). In panel  B , a subset of known markers (e.g. 
SNPs) are tested across a region in an attempt to approximately 
assess all variation (open diamonds). In this situation, the caus-
ative mutation is tested for association indirectly, as it is in LD 
with the genotyped SNPs. Adapted from  [29] . 
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M 1  is overrepresented in the cases compared to the controls.     
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Namely, locus heterogeneity combined with random 
sample variation ensures that particular loci may have a 
larger observed effect (OR) in one GWA study than in 
another. As a consequence, the effect sizes may some-
times be upwardly biased relative to the whole popula-
tion, a feature commonly known as the Winner’s curse 
(also known as the Beavis effect  [13] ).

  However, and more importantly, as more GWA stud-
ies are performed and subsequently combined (GWA 
meta-analysis), more novel loci will be implicated. For ex-
ample, a simple calculation using Fisher’s combined 
p value method,  

2
2

1
2 loge i

i
p

�

��

where p i  is the p value for the i th  test and k is the number 
of tests being combined  [14] , indicates that the combined 
analysis of 2 similarly powered GWA studies observing 
the same SNP effect at p = 1  !  10 –5  will produce a genome-
wide significant association ( �  2  4  = 46.05, p = 2.4  !  10 –9 ). 
Indeed, combining 3 studies observing a SNP effect at
p = 1  !  10 –4 , 4 studies at p = 1  !  10 –3  or 7 studies at p = 
1  !  10 –2 , will produce a genome-wide significant associa-
tion signal. These results very clearly justify the need for 
researchers to continue performing and combining GWA 
studies in order to elucidate the biological pathways and 
mechanisms underlying human complex traits.

  The Public Availability of Genomic Data and the 

Implications for Indirect Risk Estimation 

 The continued rapid development of genetic sequenc-
ing and genotyping technology has led to an equally rap-
id increase in genetic variation identification and tools 

for its characterization. GWA genotyping arrays have 
now reached 5,000,000 SNPs per individual, while costs 
for sequencing an individual’s whole genome or whole 
exome (known coding portions of genes) continue to 
drop at an astounding rate (a times 29,000 price reduction 
since 2001) and as of this writing are below USD 4,000 
and USD 1,800, respectively. A USD 1,000 (whole) ge-
nome sequence is expected to be available within the next 
2 years.

  Additional and more detailed genomic studies are 
also being developed and performed at a similar rate, 
with the results, in one form or another, typically avail-
able in the public domain (e.g. http://snpedia.com, http://
hapmap.ncbi.nlm.nih.gov/, http://www.1000genomes.
org/, and http://www.ncbi.nlm.nih.gov/gap). Direct-to-
consumer genetic tests are now affordable and widely 
available  to the general public (e.g. http://www.de-
codeme.com/, http://www.familytreedna.com/, http://
www.navigenics.com/, http://www.personalgenomes.
org, and https://www.23andme.com/). A particularly 
striking example concerns the current aim of the Per-
sonal Genomes Project (PGP) (http://www.personalge-
nomes.org) of recruiting 100,000 volunteers ‘who are 
willing to share their genome sequence and many types 
of personal information with the research community 
and the general public’ (http://www.personalgenomes.
org/participate.html).

  The first 10 participants in the PGP (the ‘PGP-10’), all 
of whom are named, have shared their DNA sequences, 
medical records and other personal information with the 
research community and the general public (http://www.
personalgenomes.org/pgp10.html). One of the identifi-
able PGP-10 participants openly declares in his publicly 
available medical history summary: ‘I have experienced 
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  Fig. 5.  Manhattan plot of hypothetical 
GWA results. p values for each SNP ana-
lyzed in the GWA study are shown as their 
‒log 10  values. Each chromosome is repre-
sented in alternating dark and light gray. 
The dashed and dotted horizontal lines 
show the thresholds for genome-wide sig-
nificant and suggestive association, re-
spectively.     
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recurrent bouts of depression and anxiety for the last sev-
eral years and recently began taking SSRIs [selective se-
rotonin re-uptake inhibitors]’ (http://www.personalge-
nomes.org/public/4.html). To date, more than 1,000 indi-
viduals have enrolled in the PGP (‘PGP-1K’) and allow 
their data to be available on the internet (http://www.per-
sonalgenomes.org/pgp1k.html).

  Even if a participant decides to restrict the release of 
specific information, however, their participation in any 
of the genomic studies, combined with enhanced genom-
ic knowledge, advances in mathematical and statistical 
techniques, and increased computational power, increase 
the potential for almost anyone with access to the inter-
net, a good computer, and persistence to undertake with-
out a person’s consent an indirect estimation of that per-
son’s risk for a particular trait, and to arrive at a remark-
ably accurate conclusion.

  Research Design and Methods 

 The goal of the research team was to demonstrate why genetic 
information is hard to hide once it has been collected, and that an 
unauthorized, that is, indirect estimation of an individual’s risk 
for a particular trait could be arrived at using standard, currently 
available computer hardware and software. The research team de-
signed a test for this hypothesis using genetic information pub-
licly available over the internet, a good computer and some per-
sistence.

  The team had to identify publicly available genetic material to 
use. A particularly famous example of such data is the publication 
and release to public databases of Dr. James Watson’s sequenced 
genome  [15] , excepting all gene information about apolipoprotein 
E (ApoE). Dr. Watson, best known as one of the codiscoverers of 
the structure of DNA in 1953 with Francis Crick, had requested 
that his apolipoprotein E   gene  (APOE)  information be redacted, 
citing concerns about the association that has been shown with 
late-onset Alzheimer’s disease (LOAD), which is currently incur-
able and had already claimed one of his grandmothers  [16] .

  To demonstrate that genetic information is hard to hide, with-
out contravening Dr. Watson’s wishes for  APOE  risk status ano-
nymity (see box 1 of Wheeler et al.  [15] ), the research team utilized 
SNP genotypes identified in Dr. J. Craig Venter’s genome se-
quence, which was also released publicly around the same time 
 [17] . Importantly, Dr. Venter’s sequence data redacted neither in-
formation around  APOE  nor the information that he is heterozy-
gote for both the LOAD high-risk  APOE  SNP rs429358 (T/C) and 
for the nearby correlated  APOC1  SNP rs4420638 (A/G) (i.e. the 
 APOC1  SNP is in strong LD with the  APOE  SNP  [18] ). We there-
fore replicated Dr. Watson’s sequence redaction in Dr. Venter’s 
data and attempted to infer or, perhaps more correctly,  impute  
Dr. Venter’s  APOE  status using publicly available data  [19] . (For a 
description of genotype imputation, see  fig. 6, 7 .)

  We note that Dr. Watson received genetic counseling, and 
after being made aware of the privacy risks associated with pub-
lic data broadcast, Dr. Watson decided to share his personal ge-

nome by releasing it into a publicly accessible scientific database. 
However, we contacted Dr. Watson and colleagues informing 
them of the possibility of inferring his risk for LOAD conveyed 
by  APOE  risk alleles using surrounding SNP data. As a conse-
quence, the online James Watson Genome Browser (JWGB) 
nominally removed all data from the 2 Mb region surrounding 
 APOE .

  Briefly, genotype imputation was performed using the MaCH 
(version 1.0.16) computer program  [20, 21] , HapMap (CEU) 
phased haplotype data (encompassing 144 SNPs) and Dr. Ven-
ter’s genotypes listed for the 200 kb region surrounding 
rs4420638 (encompassing all 144 HapMap SNPs). Following the 
2-step approach outlined in the MaCH online tutorial and after 
excluding Dr. Venter’s genotype data for rs4420638 and all 
 APOE  SNPs, we were able to correctly impute Dr. Venter’s 
rs4420638 genotype as A/G. The posterior probabilities for Dr. 
Venter’s rs4420638 genotype being A/A, A/G or G/G were esti-
mated to be 0.008, 0.992 and 0.000, respectively. The high accu-
racy of Dr. Venter’s imputed rs4420638 genotype (i.e. 99.2% like-
lihood of being A/G) exemplifies the utility of imputing  APOE  
genetic risk for LOAD  [19] .

  Another example of indirect risk estimation is one in which 
the genetic distance of an individual with respect to 2 population 
samples is used to infer the presence of an individual of known 
genotype in a sample for which only allele frequencies are known 
 [22] . Such an approach numerically expresses how genetically 
similar individuals or populations are by comparing their allele 
frequencies. Although the method is less accurate in practice 
than originally thought – due to its sensitivity to underlying as-
sumptions  [23, 24] , such identification could be utilized in foren-
sic science to establish the presence or absence of a person’s DNA 
in a mixture of DNA and used to establish whether an individu-
al was a member of a particular disease cohort of a GWA study 
 [22–24] .

  Conclusion: An Outlook to the (Near) Future 

 To date, GWA studies have been based on information 
learned from the HapMap project and therefore have 
been concentrated on testing common SNP variation for 
association with human complex traits. Most recently, 
the 1000 Genomes project  [25] , which involves the whole-
genome sequencing of hundreds of individuals sampled 
from broad geographic regions, is generating high-qual-
ity haplotypes for  1 1,000 individuals, including near-
complete coverage of SNPs with population MAFs of 1% 
or more  [26] . Variation identified by the 1000 Genomes 
project, allowed Illumina �  to design and release a human 
exome GWA array that allows inexpensive ( ! USD 85 per 
sample) interrogation of approximately 250,000 putative 
functional exonic variants.

  In addition to providing a near-complete catalog of 
SNPs with MAF  6  0.01, the 1000 Genomes project is 
identifying millions of rarer SNPs and cataloging other 
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types of variation such as insertions/deletions (indels) 
and structural variants (SVs)  [27]  – a type of copy number 
variant. The most recent 1000 Genomes reference data 
(December 2011) contains approximately 36.6 million 
SNPs, 3.8 million short indels and 14,000 deletion SVs 
(f t p : //f t p.10 0 0 genome s .ebi . ac .u k /vol1/f t p/re-
lease/20110521/README.20111111_phase1_integrated_
call_set). Moreover, the impending release of the next 
generation of imputation software will allow these and 
other types of variation to be inferred utilizing existing 

common SNP GWA data and 1000 Genomes project ref-
erence haplotypes.

  Thus, as our knowledge of the human genome in-
creases (identifying new variation associated with risk) 
and computational tools are further developed (which 
accurately and efficiently measure genetic risk), the po-
tential for  indirect  estimation of risk will continue to in-
crease.

  It is also vital to appreciate that because such risk is 
inherited, it can be shared among relatives and there-
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  Fig. 6.  Genotype imputation within a sam-
ple of related individuals. Panel        A  presents 
a pedigree similar to that in figure 1, but, 
in addition to the microsatellite markers 
genotyped in the 2 parents and 3 children, 
7 SNPs were genotyped in the parents. 
Panel  B  shows how the observed SNP ge-
notypes and haplotype information have 
been combined to fill in the SNP geno-
types that were originally missing in the 
children. Adapted from  [20] . 
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confidentiality, discriminatory, and defamatory use of 
genetic data as well as relevance regarding the complexi-
ties of informed consent for both research participants 
and their close genetic relatives in the era of personalized 
genomics.

fore not only pertains to the specific individual with 
genetic data in the public domain, but also to their rela-
tives.

  The potential for the indirect estimation of genetic risk 
has considerable relevance to concerns about privacy, 
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  Fig. 7.  Genotype imputation within a sam-
ple of unrelated individuals. Panel        A  repre-
sents an individual (study sample) geno-
typed at 3 SNPs across a small region (say 
100–200 kb) and a collection of haplotypes 
from a reference sample (e.g. HapMap ref-
erence). Panel  B  shows how the observed 
SNP genotypes and reference haplotypes 
can be used to predict the study sample’s 
haplotype, and in panel  C , subsequently 
fill in the unobserved SNP genotypes in 
the study sample. Adapted from  [20] . 
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