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BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene
mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest
genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic lit-
erature search was conducted in PubMed of publications up to 1 April 2008, using the search terms ‘endometriosis’
plus ‘allele’ or ‘polymorphism’ or ‘gene’. Papers included were those with information on both case and control selec-
tion, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English
language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing
evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the
genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association
is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases.
Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research com-
munity must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the
necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evi-
dence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a
starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating
disease.
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Introduction

Endometriosis is a complex condition, with tissue resembling

endometrium found in extra-uterine sites. Although symptoms

vary, they commonly include severe pelvic pain, severe dysmenor-

rhea (painful periods) and reduced fertility (Giudice and Kao,

2004; Berkley et al., 2005). The main pathological processes

associated with the disease are peritoneal inflammation and fibro-

sis, and the formation of adhesions and ovarian cysts. Different

phenotypic classifications have been proposed, the main ones

being the 4-stage rAFS classification (based on the total surface

size of lesions, presence of adhesions and ovarian lesions) (The

American Fertility Society, 1985), ovarian versus peritoneal

disease (The American Fertility Society, 1985) and deep infiltrat-

ing versus superficial disease (Koninckx et al., 1999). Whether

these subphenotypes represent the natural history of one disorder,

or are in fact different disease subtypes altogether, is an important

consideration in endometriosis research, but as yet remains

unclear. The disorder often recurs and has a major impact on

women’s health, relationships, productivity and life choices

(Mathias et al., 1996; Simoens et al., 2007). The risk of endo-

metriosis increases with age during the reproductive years

(Eskenazi and Warner, 1997); the onset can occur from the

menarche onwards, but presentation after the menopause is rare,

indicating that it is an estrogen-dependent condition (Bulun

et al., 2002). The few established risk factors include increased

exposure to menstruation (i.e. shorter cycle length, longer duration

of flow and nulliparity), positive smoking history (which reduces

ovarian production of estrogen and reduces risk of endometriosis)

and increased peripheral body fat (which increases estrogen)

(Eskenazi and Warner, 1997; Missmer and Cramer, 2003;

Berkley et al., 2005).

As the diagnosis of endometriosis is made on visual inspection of

the pelvis at laparoscopy, the population prevalence is unknown.
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The best estimates suggest endometriosis (all stages) affects 8–10%

of women in their reproductive years (Eskenazi and Warner, 1997)

and 20–50% of women with infertility (Gao et al., 2006), with an

estimated prevalence of moderate–severe endometriosis of up to

2% (Zondervan et al., 2002). Prevalence of all stages of endometrio-

sis in Australia was estimated at 7.2% in a volunteer sample of

Australian twins (Treloar et al., 1999a). These figures represent

prevalence rates in Caucasian populations; there is some evidence

that the prevalence is lower in African-American women (Kyama

et al., 2004), but estimates may be biased due to differential

access to healthcare (Missmer et al., 2004). The most widely

accepted theory to explain the origin of endometriotic tissue is

that viable endometrial cells reach the peritoneal cavity through ret-

rograde menstruation along the fallopian tubes (Sampson, 1927).

However, menstrual debris is present in the peritoneal cavity of

up to 90% of menstruating women. Possible explanations for

susceptibility in only some women are summarized in Fig. 1 and

include increased exposure to menstrual debris, abnormal eutopic

endometrium, altered peritoneal environment, reduced immune

surveillance and increased angiogenic capacity (Healy et al.,

1998; Vinatier et al., 2001; Treloar et al., 2002; Varma et al.,

2004). Biological studies have so far failed to clearly define the

mechanisms leading to disease.

Genetic contributions to endometriosis

Endometriosis is commonly regarded as a complex trait, caused

by the interplay between genetic and environmental factors.

The contribution of genetic factors in endometriosis susceptibility

is supported by a number of different studies (Kennedy, 1998;

Zondervan et al., 2001; Simpson and Bischoff, 2002; Stefansson

et al., 2002; Treloar et al., 2002; Viganò et al., 2003). Higher

rates of endometriosis are found among the relatives of endome-

triosis cases compared with those of controls in both hospital

(Kennedy et al., 1995; Simpson and Bischoff, 2002) and

population-based (Stefansson et al., 2002) samples. The relative

recurrence risk to sibs, which is the increase in risk of an individ-

ual whose sibling is affected compared with the risk in the general

population, has been estimated at 2.34 in an Australian sample of

twins and their families (Treloar et al., 2002), although estimates

from imaging studies on the sisters of women with more severe

disease suggest the value may be as high as 15 (Kennedy et al.,

1997). It should be noted that, for endometriosis, obtaining an

accurate estimate of this recurrence risk is difficult because the

population prevalence is unknown and there is inevitable bias in

ascertaining endometriosis cases through surgery that will influ-

ence the estimated risk to the siblings. Further evidence of

genetic risk of endometriosis has been suggested by twin

studies, which showed concordance for endometriosis among

monozygotic twins (Moen, 1994; Hadfield et al., 1997), and

increased concordance in monozygotic compared with dizygotic

twins with heritability estimated at 51% (Moen, 1994; Hadfield

et al., 1997; Treloar et al., 1999b, 2002). In addition to these

studies in humans, familial aggregation has also been shown in

non-human primates (Zondervan et al., 2004).

Recently, the genetic contribution to endometriosis has been

questioned (Di and Guo, 2007). The authors point out problems

with study designs due to small sample size in many studies, ascer-

tainment bias, increased opportunity for diagnosis among family

members of cases compared with controls and familial aggrega-

tion of confounding risk factors such as early age at menarche

(Di and Guo, 2007). These are valid concerns particularly for

some published studies, although we should acknowledge the dif-

ficulties inherent in endometriosis research because of the lack of a

non-invasive diagnostic tool (Zondervan et al., 2002). The

strongest evidence for genes influencing endometriosis comes

from more recent, large-scale, studies in twins (Treloar et al.,

1999b) and in the Icelandic population (Stefansson et al., 2002).

A classical twin study in a large sample of Australian twins con-

cluded that genetic factors contributed about half of the variation

in endometriosis risk (Treloar et al., 1999b). The potential contri-

bution of increased sharing of environmental risk-factors of endo-

metriosis among identical versus non-identical twins (a potential

alternative explanation for the observed results) was investigated

and considered unlikely. Analysis of endometriosis cases in the

Icelandic population addressed issues of bias in various ways

and in each case reached the conclusion that there was evidence

for genetic effects on endometriosis risk (Stefansson et al.,

2002). Nevertheless, all studies trying to dissect the genetic and

non-genetic causes using familial aggregation studies based on

phenotypic observations alone must make explicit assumptions

about shared environmental influences that are difficult to

exclude entirely. Genetic contributions to disease can be tested

directly without making these assumptions using genome-wide

marker data either through linkage or association studies (Visscher

et al., 2006), but very large sample sizes are required for accurate

estimates.
Figure 1: Schematic representation of possible mechanisms contributing to

the development of endometriosis.
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Familial aggregation may result from comorbid conditions or

traits explaining the observed findings. With regard to endometrio-

sis, Di and Guo (2007) suggested that chromosomal regions linked

to endometriosis (Treloar et al., 2005a; Zondervan et al., 2007)

may be due to familial aggregation of age at menarche; itself a

complex, heritable trait associated with endometriosis risk. Such

an explanation—although theoretically possible—is unlikely,

since linkage studies specifically designed for one complex trait

of interest have low power to detect other complex traits that are

loosely associated with it. Indeed, linkage analyses of age at

menarche show that linkage signals for endometriosis do not

overlap signals for age at menarche (see Linkage Mapping).

Therefore, although individual studies carry interpretation difficul-

ties to a greater or lesser extent, current evidence accumulated

across a range of studies supports a genetic contribution to

endometriosis risk.

Defining pathways to disease is a major goal of research in

endometriosis. This knowledge can be used to develop more effec-

tive methods of diagnosis and treatment. Genetic studies provide

one important approach to define causal pathways influencing

endometriosis. The number of gene mapping studies for this

disease has increased in recent years as the role of genetic

factors has become more widely accepted. In addition, there

have been dramatic advances in human genetics in the last

few years with many recent papers reporting genetic variants

associated with other complex diseases. This review summarizes

current studies on genetic variation contributing to endometriosis

and the prospects of finding gene pathways contributing to disease

using the latest developments in high throughput genotyping and

genome-wide strategies.

Gene discovery

Gene mapping methods have been very successful in identifying

mutations responsible for monogenic diseases. These mutations

generally have large effects and have moderate to high penetrance.

Consequently, most mutation carriers present with the disease, and

most affected families carry the same mutation. Mutations with

large and distinct effects are relatively easy to map and locate.

Examples of mutations with large effects influencing reproductive

pathways include mutations in KISS1 receptor (KISS1R) influen-

cing idiopathic hypogonadotropic hypogonadism (de Roux

et al., 2003; Seminara et al., 2003) and mutations in growth differ-

entiation factor 9 (GDF9) increasing risk for dizygotic twinning

(Palmer et al., 2006).

Finding genetic variants contributing to complex diseases such

as endometriosis, diabetes or heart disease is far more difficult

because the contribution of individual genes is small, many

genes contribute to an individual’s risk of developing the

disease and disease risk is often modified by environment.

However, common diseases present a much greater public health

burden than Mendelian diseases, and there are major international

efforts to define genetic contributions to these diseases. The basic

requirements to map disease genes remain the same (Fig. 2). Many

studies are required for both the discovery and replication steps

with sufficient power to detect the small effects of any individual

variants. In addition, different combinations of variants are likely

to be present in cases in different families and cases in the same

family may not all carry the same variants. Despite these

limitations, gene mapping remains an important approach to

understanding pathways involved in complex disease aetiology,

including endometriosis.

Candidate gene studies

Most genetic studies of endometriosis to date have followed

a priori defined biological hypotheses and have analysed a small

number of variants in candidate genes (often in small numbers

of cases and controls). Candidate genes (candidates) are generally

chosen based on biological mechanisms thought to contribute to

disease. Variants in these candidate genes are genotyped in

samples from cases and controls or in affected families to test

for association by statistical analysis of genotype data.

To identify candidate-gene association studies of endometriosis,

a systematic literature search was conducted in PubMed (http://
www.ncbi.nlm.nih.gov/sites/entrez/) of publications up to 1

April 2008, using the search terms ‘endometriosis’ plus ‘allele’ or

‘polymorphism’ or ‘gene’. Only papers that included information

on both case and control selection, and showed allelic and/or

genotypic results for named germ-line polymorphisms, were

included. To enable the application of these criteria by the

authors, the review was limited to publications in the English

language. Table I presents an overview of candidate gene studies

in a format to allow readers to identify which genes have been

tested and whether results have replicated in more than one study.

These studies report results from statistical tests for association

with endometriosis susceptibility for 76 genes (summarized in

Table I). Many of these studies have been reviewed in detail

recently (Guo, 2005, 2006a,b; Falconer et al., 2007). Candidates

tested include genes from detoxification pathways, sex steroid path-

ways and cytokine signalling pathways, adhesion molecules and

matrix enzymes, and cell-cycle regulation (Falconer et al., 2007).

Glutathione S-transferase enzymes involved in the pathway for

detoxification of a range of toxic compounds and carcinogens

have been studied extensively, in particular because of the sugges-

tion of dioxin exposure being a risk factor (Birnbaum and

Cummings, 2002), a finding which was later questioned (Rier

et al., 2001; Eskenazi et al., 2002; Guo, 2004). Polymorphisms in

glutathione S-transferase M1 (GSTM1) on chromosome 1p13.3

Figure 2: The basic requirements for mapping disease genes.
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Table I. A summary of case–control results from genetic association studies with endometriosis.

Candidate gene** Chr Number of studies with association*

Significant Non-significant #Sign/Total

Cytokines/Inflammation

CCR2 3p21 0 1 0/1

CCR5 3p21 0 1 0/1

CTLA4 2q33 0 1 0/1

IFNG 12q24 1 0 1/1

IL1B 2q13-21 0 2 0/2

IL1R1 2q12 0 1 0/1

IL1RN 2q14 0 1 0/1

IL2RB 22q13 1 0 1/1

IL4 5q23-31 0 2 0/2

IL6 7p21-15 0 3 0/3

IL10 1q31-32 2 1 2/3

IL12RB1 19p13 0 1 0/1

IL18 11q22 0 1 0/1

KIR 19q13 1 0 1/1

MCP1 (CCL2) 17q11-12 0 1 0/1

MPO 17q21-23 0 1 0/1

PTPN22 1q13 1 0 1/0

RANTES (CCL2) 17q11 0 1 0/1

STAT6 12q13 1 0 1/1

TNFA 6p21 3a 5 3/8

TNFR2 1p36 0 1 0/1

Steroid-synthesizing enzymes, detoxifying enzymes and receptors

AhR 7p15 0 1 0/1

AhRR 5p15 2 0 2/2

ARNT 1q21 0 1 0/1

CYP17A1 10q24 0 6 0/6

CYP19A1 15q21 2 3 2/5

CYP1A1 15q24 1 5 1/6

CYP1B1 2p22 0 3 0/3

GSTM1 1p13 6 6 6/12b

GSTP1 11q13 1 1 1/2

GSTT1 22q11 2 7 2/9b

NAT1 8p23-21 0 1 0/1

NAT2 8p22 2 2 2/4

PPARG 3p25 2 0 2/2

Hormone receptors

AR Xq12 1 1 1/2

ESR1 6q24-27 5c 4 5/9d

ESR2 14q21-22 1 (stage IV) 1 1/2

NRIP1 21q11 1 0 1/1

PGR 11q22-23 5e 2 5/7

Estradiol metabolism

COMT 22q11 0 3f 0/3

HSD17B1 17q11-21 2 0 2/2

Other enzymes and metabolic systems

ACE 17q23 1 0 1/1

AHSG 3q27 1 0 1/1

EMX2 10q26 0 1 0/1

eNOS (NOS3) 7q36 1 1 1/2

GALT 9p13 1 4 1/5

LH-B 19q13 0 2 0/2

SERPINE (PAI1) 7q21-22 1 0 1/1

TIMP2 17q25 1 0 1/1

XRCC4 5q13-14 1 0 1/1

Growth factor systems

EGF 4q25 0 1 0/1

EGFR 7p12 1 1 1/2

FGFR2 10q26 0 1 0/1

PTEN 10q23 0 1 0/1

Continued
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and glutathione S-transferase theta 1 (GSTT1) on chromosome

22q11.23 have been evaluated in over twenty studies (Guo,

2005). Pooled odds ratios for both enzymes (GSTM1: OR: 1.96,

95% CI: 1.29–2.98; GSTT1: OR: 1.77, 95% CI: 1.19–2.63)

suggested increased risk of developing endometriosis. However,

there is significant heterogeneity between studies for both

enzymes and publication bias suggesting the results should be

viewed with caution especially for GSTM1 (Guo, 2005).

Meta-analysis for multiple studies for the detoxification enzymes

N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2) on

chromosome 8p22 and cytochrome P450, family 1, subfamily A,

polypeptide 1 (CYP1A1) on chromosome 15q24.1 found no evi-

dence for association between the NAT2 acetylation polymorphism

(pooled OR: 1.13, 95% CI: 0.70–1.82) and endometriosis (Guo,

2006a). There is some evidence for a small increase in risk for

alleles at the MspI polymorphism in CYP1A1 (pooled OR: 1.44,

95% CI: 1.00–2.06), but the evidence is not strong, and further

studies are needed to confirm the result (Guo, 2006a).

As noted earlier, endometriosis is an estrogen dependent disease

and a number of studies have investigated genes from pathways of

sex steroid biosynthesis and signalling. Review of association

studies for cytochrome P450, family 17, subfamily A, polypeptide

1 (CYP17A1), cytochrome P450, family 19, subfamily A, poly-

peptide 1 (CYP19), androgen receptor (AR), progesterone receptor

(PGR) and estrogen receptors (ESR1 and ESR2) (Guo, 2006b) con-

cluded that many reported positive findings were unsound because

of problems with data analysis in the original reports.

Meta-analysis of the studies provided some, though limited,

support for association between endometriosis and both the

PGR-PROGINS polymorphism (pooled OR: 1.94, 95% CI:

1.31–2.88) and ESR1-PvuII polymorphism (pooled OR: 2.1,

95% CI: 1.20–3.68) (Guo, 2006b). A subsequent study in a

large family-based sample failed to support any association

between PGR and endometriosis (Treloar et al., 2005b).

Convincing evidence for association must include replication.

Many replication studies for complex disease associations fail at

Table I. Continued

Candidate gene** Chr Number of studies with association*

Significant Non-significant #Sign/Total

TGFB1 19q13 1 1 1/2

VEGFA 6p21-12 5 1 5/6

Adhesion molecules and matrix enzymes

CDH1 16q22 1 0 1/1

COL18A1 21q22 0 1 0/1

ICAM1 19p13 1 2 1/3

MMP1 11q21-22 1 2 1/3

MMP2 16q12 1 (deep-infil.) 1 1/2

MMP3 11q22 0 3 0/3

MMP7 11q22 1 1 1/2

MMP9 20q11-13 0 1 0/1

MMP12/13 11q22 1 0 1/1

Apoptosis, cell-cycle regulation and oncogenes

CDKN1A [p21] 6p21 0 1 0/1

FAS 10q24 0 1 0/1

FASL 1q23 0 1 0/1

KRAS 12p12 0 1 0/1

(T)P53 17p13 1 4 1/5

Human leukocyte antigen system and immune components

HLA-A 6p21 0 1 0/1

HLA-B 6p21 1 0 1/1

HLA-C2 6p21 0 1 0/1

HLA-DPB1 6p21 0 1 0/1

HLA-DQB1 6p21 1 0 1/1

HLA-DRB1 6p21 0 4 0/4

*Only articles published in English were reviewed in preparing this table, with details for individual studies given in Supplementary Table 1. One result for each
study sample was counted for each gene; when .1 polymorphism was investigated in a study, the result is indicated as significant if 1 or more of the variants
was reported by the authors to be significant.
**Candidate gene groupings are according to those proposed by Falconer et al. (2007).
aTwo of these studies found significant associations with Stage IV only.
bIn a meta-analysis, Guo (2005) found no evidence for association with GSTM1, and some limited evidence of increased risk with the null genotype of GSTT1
(interpretation hampered by publication bias). The reason for finding GSTT1 not associated in the table above is that in the meta-analysis (Guo, 2005), three or
more studies with large significant results were included (non-English manuscripts), two from China (Peng et al., 2003; Ding et al., 2004) and one from Russia
(Ivashchenko et al., 2003).
cOne of these studies found a significant effect for Stage I/II versus controls only, not Stage III/IV, whereas another study found a significant effect for
recurrent cases versus controls.
dCritical meta-analysis by Guo (2006) reported a handful of positive findings that have not been independently replicated.
eOne of these studies found a significant effect for deep-infiltrating versus controls only.
fOne of these studies found a significant effect of COMT on risk of adenomyosis.
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the replication step (Ioannidis et al., 2001; Hirschhorn et al.,

2002). Less than half of the reported associations with endometrio-

sis have been investigated in a separate sample and many associ-

ations are not replicated in subsequent studies (Table I). A number

of factors contribute to this failure including low prior odds for

association when testing only a few variants in one gene, study

power, data analysis, publication bias, population differences,

failure to type the same variants and technical issues. Many

studies only test small samples and lack the necessary power to

detect the small effects expected for most common diseases

including endometriosis (Zondervan et al., 2002, 2004). Results

that appear significant are more likely to be published (Ioannidis

et al., 2001; Hirschhorn et al., 2002). In addition, some studies

do not take adequate account of statistical problems of multiple

testing (Guo, 2006b). This publication bias, together with pro-

blems in experimental designs, suggests many results are false

positive associations. Studies in our large Australian sample

failed to replicate putative associations for PGR and TNFA

(Treloar et al., 2005b; Zhao et al., 2007). We recently typed

the rs2476601 1858T/C (Trp620Arg) variant in PTPN22

(Ammendola et al., 2007) in the same sample and found no evi-

dence for association with endometriosis (‘T’ allele frequencies

in cases and controls were 0.095 and 0.091, respectively,

P-value . 0.5).

For real associations, the strength of the true effect is often over

estimated in the initial study (Ioannidis et al., 2001) in an effect

referred to as the ‘winner’s curse’ (Zollner and Pritchard, 2007).

Consequently, replication studies often need more samples and

greater power than the original study to detect the effect and

some cases of failure to replicate findings from the original

study might be due to the low power of replication studies

(Lohmueller et al., 2003; Zollner and Pritchard, 2007). Review

of the large number of studies conducted for association with

endometriosis (Table I) does not provide support for any gene

variants clearly associated with increased risk of endometriosis.

Some reported results may represent true associations, but given

the small effect sizes expected further studies in very large

samples are required to provide convincing evidence. This can

be achieved by combining samples from multiple sites. Recent

candidate gene studies in breast cancer included up to 18 000

cases and 22 000 controls to identify a common variant in

CASP8 associated with breast cancer risk (Cox et al., 2007),

although more modest sample sizes have been used in successful

studies for other common diseases.

Linkage mapping

A second gene mapping approach involves a hypothesis-free

search for evidence of genomic regions harbouring genetic risk

variants for endometriosis—prior to further association or sequen-

cing studies—using linkage mapping across the genome. Over a

period of 10 years, laboratories in Australia and the UK recruited

families of sisters with surgically confirmed endometriosis for

sib-pair linkage analysis. Sib-pair linkage studies use genome-

wide analysis of informative polymorphic microsatellite markers

to identify regions of significant excess sharing in affected sibs

(Risch, 1990a; Kruglyak and Lander, 1995a,b; Lander and

Kruglyak, 1995). For common diseases with a high genetic

recurrence risk, the most informative relative pairs are distant

ones. For diseases such as endometriosis with lower recurrence

risk to sibs, sister pairs constitute the best design (Risch, 1990b).

The affected sib method is also more suitable for those conditions

where it is difficult to determine ‘unaffected’ status. In the case of

endometriosis, determination of unaffected status would require a

laparoscopy.

A genome scan with 1176 affected sister pair families was com-

pleted in the combined Australian and the UK families (Treloar

et al., 2005a) comprising the International Endogene Consortium

(IEC). Power calculations suggested the study sample had 80%

power to detect a locus with a recurrence risk to sisters of 1.35

(Treloar et al., 2002). Genetic markers spaced about every

10 cM (approximately every 10 Mb) across the genome were

typed in DNA samples from the sisters and other family

members. The combined data identified one peak of significant

linkage on chromosome 10 with a peak of 3.09 (genome-wide

P-value of 0.047). A second peak on chromosome 20 shows sug-

gestive evidence for linkage. The results were consistent for both

data sets with evidence for linkage to chromosome 10 in both the

Australian and the UK families. Fine mapping with an additional

four microsatellite markers on chromosome 10 increased the evi-

dence for linkage slightly. The peak of maximum linkage was

located at 148.75 cM (127.92 Mb).

A separate linkage analysis in a subset of families with three or

more affected women (Oxford: n ¼ 52; Australia: n ¼ 196) was

conducted to test whether the apparent concentration of cases in

these families might reflect the presence of a more ‘Mendelian-

like’ rare genetic variant acting in this subset of families. If

present, this situation would be analogous to the discovery of

BRCA1 and BRCA2 genes causal in a small subset of breast

cancer patients with strong familial inheritance patterns (Miki

et al., 1994; Wooster et al., 1995). The analysis in the subset of

endometriosis families identified an additional peak of linkage

on chromosome 7p (Zondervan et al., 2007). The combined analy-

sis identified significant evidence for linkage to the region using a

transmission model with a recessive gene conferring a high risk for

developing the disease. This suggests there may be a high-

penetrance susceptibility locus for endometriosis in this region

present in a small subset of families.

It has been suggested that familial aggregation of endometriosis,

and linkage to chromosomes 7 and 10, may be due to the associ-

ation between endometriosis and age at menarche, since age at

menarche is known to have a genetic component (Di and Guo,

2007). Specific gene mapping studies of age at menarche

suggest that variants influencing this trait do not overlap the

regions of chromosome 7 or 10 implicated in our studies of endo-

metriosis (Treloar et al., 2005a; Guo, 2006; Rothenbuhler et al.,

2006; Zondervan et al., 2007). Additionally, a large linkage

study in 13 697 individuals and 4899 pseudo-independent sister-

pairs found no evidence for significant linkage and no suggestive

linkage peaks on chromosome 7 or 10 (G.W. Montgomery et al.,

unpublished observations). Linkage to these regions in endo-

metriosis is unlikely to be related to age at menarche, but it

should be noted that common variants influencing both age at

menarche and endometriosis would provide valuable information

on the causes of endometriosis and have implications for variation

in age of menarche.

Subsequent fine mapping and candidate gene resequencing

studies have been—and continue to be—conducted for genes
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under the chromosome 7 and 10 linkage peaks to identify genetic

variants contributing to linkage in these regions. Two genes on

chromosome 10q (Fig. 3), which were previously implicated in

endometriosis and endometrial cancer, have been investigated

(Treloar et al., 2007). The genes are Empty Spiracles, Homolog

of Drosophila, 2 (EMX2) and Phosphatase and Tensin Homolog

(PTEN) (Sato et al., 2000; Kurose et al., 2001, 2002; Fujii et al.,

2002; Latta and Chapman, 2002; Martini et al., 2002; Swiersz,

2002; Zhou et al., 2002; Dinulescu et al., 2005). EMX2 is a tran-

scription factor essential for reproductive tract development also

expressed in the adult uterine endometrium, with decreased

expression during the luteal phase of the menstrual cycle (Troy

et al., 2003; Daftary and Taylor, 2004). PTEN promotes cell

survival and proliferation and inactivation of PTEN is an early

event in endometrial hyperplasia and the development of

ovarian and endometrial cancers (Maxwell et al., 1998). PTEN

lies at 89.6 Mb, more centromeric than the region of significant

linkage (Fig. 3). However, the linkage peak is broad and there is

evidence for linkage and association with endometriosis in

Puerto Rican families at marker D10S677 (Flores et al., 2004).

D10S677 is located at 113.34 cM (95.95 Mb) close to the PTEN

locus. Genotyping of a large number of markers across both

genes found no evidence of association with endometriosis

(Treloar et al., 2007).

More recently, another gene which lies within the region of sig-

nificant linkage on chromosome 10, the fibroblast growth factor

receptor 2 gene (FGFR2), was implicated in both endometrial

(Pollock et al., 2007) and breast cancer (Easton et al., 2007;

Hunter et al., 2007b). To investigate this gene for involvement

in endometriosis, single nucleotide polymorphisms (SNPs)

within intron 2 of FGFR2 including two SNPs (rs2981582 and

rs1219648) significantly associated with breast cancer were geno-

typed. In addition, a dense set of 40 SNPs across 150 kb of the

FGFR2 gene covering common variation within the coding

region of the gene was genotyped in a large Australian sample

of endometriosis cases and unrelated controls. No evidence for

association between common variation in either intron 2 or the

entire coding region in the FGFR2 gene was found, suggesting

this gene is not a major contributor to endometriosis susceptibility

(Zhao et al., 2008).

Genome-wide association

Experience has shown that, apart from a few notable exceptions,

hypothesis-based candidate gene studies and linkage mapping fol-

lowed by candidate gene targeting have been largely unsuccessful

in identifying susceptibility genes for complex diseases. Even with

prior linkage information limiting the genomic region of interest,

it is difficult to define good candidates because we often lack

sufficient knowledge about the biological processes underlying a

disease, and—in addition—do not yet know the biological

functions of all genes. Indeed, following on from identifying

significant linkage on chromosome 10, the IEC has now

turned to uncovering the gene(s) involved by utilizing further

Figure 3: Schematic representation of the distal portion of chromosome 10 showing the region of significant linkage to endometriosis reported in Treloar et al.

(2005a) and the location of candidate genes in the region screened for association with endometriosis.
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hypothesis-free fine mapping association methods using very

densely spaced SNPs, chosen to most comprehensively capture

the genetic architecture in the region.

We are using recently developed genome-wide association

(GWA) methods providing a powerful approach to locating

genetic variants contributing to common diseases. These

methods have arisen from several genome discovery projects fina-

lized in recent years, combined with staggering developments in

increased efficiency and reduced costs of high-throughput genotyp-

ing technologies. During 2007, the number of risk alleles identified

for common diseases identified using these new methods exceeds

the number identified in the previous decade (Petretto et al.,

2007). Key developments underpinning GWA studies include the

survey of common human variation by the HapMap Consortium

(Consortium, 2005), and the development of high-throughput

genomics platforms capable of genotyping up to 1 million SNPs

in a single experiment. The human HapMap project (http://
www.hapmap.org/) provided detailed information on population-

specific patterns of genomic architecture and genetic variation.

The results showed that common SNPs in close proximity to

each other are often inherited together within populations, so that

the presence of one predicts the presence of another (also termed

‘linkage disequilibrium’). The HapMap project also provided a

‘map’ indicating the dependence between these common SNPs,

and this information can be used to greatly reduce the amount of

genotyping required in GWA studies to ‘cover’ the whole

genome with regard to common genetic variation.

In parallel with studies exploring genomic architecture, techno-

logical advances have led to development of platforms for

genotyping many thousands of SNPs in a single experiment.

Several high-throughput genotyping platforms can now type up

to 1 million SNPs in an individual sample and process many

samples per day. Current commercial SNP genotyping chips use

sets of SNPs selected based on information from the HapMap

data to achieve maximum genome coverage. The chips are

being used successfully in GWA studies to discover genes

contributing to complex disease.

In a recent series of papers, the Wellcome Trust Case Control

Consortium (WTCCC) employed these genome-wide techniques

on a common set of 3000 controls with sample collections exceed-

ing 2000 cases and reported associations for a range of complex

diseases which were subsequently replicated in further large

sample collections including type 1 diabetes (Consortium, 2007;

Todd et al., 2007), type 2 diabetes (Consortium, 2007; Saxena

et al., 2007; Scott et al., 2007; Sladek et al., 2007), Crohn’s

disease (Consortium, 2007; Libioulle et al., 2007; Rioux et al.,

2007) and coronary heart disease (Consortium, 2007; McPherson

et al., 2007). Genome-wide scans have also reported new variants

affecting prostate cancer (Gudmundsson et al., 2007; Yeager et al.,

2007), and breast cancer (Easton et al., 2007; Hunter et al., 2007a).

Many of the papers reported associations to novel loci not pre-

viously implicated in the disease. Important features of these

studies are they included unprecedented, large sample sizes, they

concentrated on the small number of variants with strongest

evidence of association and subsequently replicated these

associations in additional large numbers of samples. Almost all

the new risk alleles have odds ratios (effect sizes) ,2.0 and

many have odds ratios ,1.5 (Petretto et al., 2007). Importantly,

�25% of associated variants are found in regions not coding for

genes and would be missed in gene centric disease discovery

programmes.

The GWA methods employed by WTCCC were highly success-

ful in identifying risk alleles in some diseases (such as Crohn’s

disease), but found very few or no risk alleles in others (such as

hypertension and bipolar disorder) (Consortium, 2007; Todd

et al., 2007). The reasons for this inconsistency are not immediately

apparent. First, they may be related to the phenotype definitions

representing a relatively heterogeneous case set (Zondervan and

Cardon, 2007). Second, it may be that environmental factors con-

tribute most to their aetiology, and any genetic risk-factors are of

such small effect that much larger studies would be required to

detect them. Moreover, even for disease where multiple risk

alleles are reported, the variants only account for a small proportion

of the genetic risk. Further loci are likely to be identified by testing

more variants identified in the genome-wide studies, but the effect

sizes are all likely to be small.

GWA offers the prospect of making real progress in discovery

of genes influencing endometriosis risk and several groups are

planning GWA studies in endometriosis. There are major chal-

lenges to the successful outcome of these studies. An enduring

lesson from all complex disease association studies is the need

for very large studies because of the small contribution of each

genetic effect, low prior odds for association and the need to

adjust for testing many thousands of SNPs (Peltonen, 2007).

Studies with sufficient power can only be achieved by collabor-

ation of large consortia. Valid concerns have been expressed fre-

quently in the past regarding the ability to dissect true findings

from the large number of ‘significant’ findings that are produced

from GWA studies because of the enormous number of statistical

tests conducted when analysing 0.5–1 M SNP genotypes

(Zondervan and Cardon, 2004; Di and Guo, 2007). However, the

recent GWA and follow-up studies have shown that the

combination of GWA study and multiple replication sets does

enable the elucidation of common genetic variants underlying a

complex trait, as long as both are sufficiently powered (including

several thousands of cases and controls).

Although genome-wide studies of gene-environment interaction

and epistasis (gene–gene interaction) are likely to require sample

sizes much in excess of those currently available, pathway-based

approaches can be readily applied to GWA studies of complex

disease to yield biological insights that are otherwise undetectable

by focusing only on individual genes and/or regions that have the

strongest evidence for association. For example, a typical

pathway-based approach might rank all genes by their significance

of association and then look for whether a particular group of

genes is enriched at the significant end of the ranked list more

than expected by chance. Application of such pathway-based

approaches, where multiple genes in the same pathway contribute

to disease aetiology, but common variations in each of the causal

genes make modest contributions to disease risk, has enormous

potential to both detect novel and confirm hypothesized causal

pathways and disease mechanisms (Wang et al., 2007). A practical

example where multiple genes in a common pathway influence a

complex reproductive trait is twinning (multiple ovulation) fre-

quency, where variation in twinning frequency is influenced by

mutations in at least three genes from the intra-ovarian bone mor-

phogenetic signalling pathway (Galloway et al., 2000; Wilson

et al., 2001; Hanrahan et al., 2004; Palmer et al., 2006).
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Recent experience in the field of breast cancer research provides

a good model of how studies might proceed to find the genes con-

tributing to endometriosis (Cox et al., 2007; Easton et al., 2007;

Hunter et al., 2007a). Studies must be carefully designed, ensuring

case definitions are similar, that large sample sizes are used, and

that replication is tested in multiple study populations. No individ-

ual groups have sufficient samples to provide convincing evidence

for association alone and international consortia must combine

data across a range of studies and population samples (Cox

et al., 2007; Easton et al., 2007; Hunter et al., 2007a). This com-

bined effort has provided the power to demonstrate convincing

evidence for variants with relatively small effects and to replicate

findings from the GWA studies (Cox et al., 2007; Easton et al.,

2007; Hunter et al., 2007a). Similar strategies are being used in

a number of other complex diseases.

It is clear that endometriosis research groups will have to adopt

comparable strategies and work closely together to combine data

from as many samples as possible to successfully identify genes

contributing to this disease. The IEC combining sample sets from

Australia, the UK and USA has recently been awarded funding

from the Australian National Health and Medical Research

Council and The Wellcome Trust in the UK to conduct a GWA

study in over 3000 cases and conduct replication studies of the

key variants in another 3000 cases and 3000 controls. Results are

likely to be similar to other complex diseases and the risk for indi-

vidual alleles will be small. Despite limitations in results from

GWA studies, convincing evidence for variants increasing risk of

endometriosis will help to define which pathways contribute to

the disease. Subsequent investigations can address whether there

is evidence for disease heterogeneity with endometriosis arising

through different pathways and also examine interactions

between genetic variants and environment. Given the small

effect sizes, it is less likely that genetic tests will be used directly

to assess individual risk of disease, but knowledge of pathways

to disease may help to develop better diagnostic methods.

Summary and conclusions

There is good evidence for a genetic contribution to the risk of

developing endometriosis. Gene mapping studies provide an

important alternative to biological studies for determining path-

ways and mechanisms of disease. However, endometriosis is a

complex trait. Both theoretical and empirical evidence suggest

many genes or variants with small effects are likely to account

for the genetic risk. Consequently, powerful, well-designed

studies are essential. The tools are now available to find genes

predisposing to endometriosis. For this to be successful, we

must follow the lead of studies in other diseases. The endometrio-

sis research community must work together to fund the necessary

GWA studies and conduct replication studies in many thousands

of cases and controls. Convincing evidence for genes associated

with endometriosis will provide the starting point for functional

and biological studies to develop better diagnosis and treatment

for this debilitating disease.
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