1. Supplementary Figures

Supplementary Figure 1. European sex-combined meta-analysis summary
A. Quantile-quantile plot
B. Manhattan plot

Supplementary Figure 2. Regional association plots from European sex-combined meta-analysis
A. Novel loci
B. Previously identified loci

Supplementary Figure 3. European sex-stratified meta-analysis summaries
A. Quantile-quantile plot from European women-only meta-analysis
B. Quantile-quantile plot from European men-only meta-analysis
C. Chicago plot

Supplementary Figure 4. Regional association plots from European men meta-analysis
A. Novel loci
B. Previously identified loci

Supplementary Figure 5. Regional association plots from European women meta-analysis
A. Novel loci
B. Previously identified loci

Supplementary Figure 6. European population-based meta-analysis summary
A. Quantile-quantile plot
B. Manhattan plot

Supplementary Figure 7. Regional association plots from European population-based meta-analysis
A. Novel loci
B. Previously identified loci

Supplementary Figure 8. All ancestries meta-analysis summary
A. Quantile-quantile plot
B. Manhattan plot

Supplementary Figure 9. Regional association plots from all ancestries meta-analysis
A. Novel loci
B. Previously identified loci

Supplementary Figure 10. Regional association plots showing cross-ancestry fine mapping at three loci.
A. TCF7L2 locus
B. SEC16B locus
C. FTO locus
Supplementary Figure 1 | Summary plots of European sex-combined meta-analysis. A. Quantile-quantile plot of SNP associations. All SNPs are plotted in black, after excluding previously known loci (±500 kb) in green, and after excluding previously known and novel loci (±500 kb) in purple. B. Manhattan plot showing previously identified loci in blue and novel loci in red. Novel loci are labeled with the nearest gene, and the y-axis is truncated to allow easier observation of novel associations. The index SNP near FTO reaches $P<10^{-150}$.
Supplementary Figure 2 | Regional association plots for European sex-combined meta-analysis. A. Regional plots for all novel loci. B. Regional plots for all previously identified loci.
Supplementary Figure 3 | Summary plots of European Sex-specific meta-analyses. A. Quantile-quantile plot of SNP associations for female-specific meta-analysis. B. Quantile-quantile plot of SNP associations for male-specific meta-analysis. For both plots, all SNPs are plotted in black, after excluding previously known loci (±500 kb) are in green, and after excluding previously known and novel loci (±500 kb) are in purple. C. Chicago plot of association statistics (-log₁₀ (P values)) for women on the positive y-axis and men on the negative y-axis. Previously identified loci are in blue. Novel associations identified in each stratified analysis are in red and are labeled with the nearest gene.
Supplementary Figure 4 | Regional association plots for European male-specific meta-analysis. A. Regional plots for novel loci. B. Regional plots for previously identified loci.

a

rs492400 – USP37 (European Men)

b

rs16907751 – ZBTB10 (European Men)

rs2176040 – LOC646736 (European Men)
Supplementary Figure 5 | Regional association plots for European female-specific meta-analysis. A. Regional plots for previously identified loci. B. Regional plots for novel loci.
Supplementary Figure 6 | Summary plots of European population-based meta-analysis. A. Quantile-quantile of SNPs in meta-analysis. All SNPs are plotted in black, after excluding previously known loci (±500 kb) are in green, and after excluding previously known and novel loci (±500 kb) are in purple. B. Manhattan plot showing previously identified loci in blue and novel loci in red. Novel loci are labeled with the nearest gene.
Supplementary Figure 7 | Regional association plots for European population-based meta-analysis. All are novel.
Supplementary Figure 8 | Summary plots of all ancestries sex-combined meta-analysis. A. Quantile-quantile plot of SNP associations. All SNPs are plotted in black, after excluding previously known loci (±500 kb) in green, and after excluding previously known and novel loci (±500 kb) in purple. B. Manhattan plot showing previously identified loci in blue and novel loci in red. Novel loci are labeled with the nearest gene, and the y-axis is truncated to allow easier observation of novel associations.
Supplementary Figure 9 | Regional association plots for all ancestries sex-combined meta-analysis. A. Regional plots for novel loci. B. Regional plots for previously identified loci.
Supplementary Figure 10 | Regional plots showing fine mapping at three loci. Each plot shows the regional association plot for European sex-combined meta-analysis, non-European sex-combined meta-analysis, and all ancestries meta-analysis. The credible intervals for each analysis are plotted at the bottom (non-European in green, European in red, and all ancestries in blue), along with the length and number of SNPs in the credible set. LD for European and All Ancestries plots was calculated using 1000 Genomes CEU individuals, while YRI samples were used to calculate LD in the non-European plots. A. Plots for TCF7L2 region. B. Plots for SEC16B region. C. Plots for FTO region.
BMI association at TCF7L2

European

- log10(p-value)

Non-European

- log10(p-value)

All Ancestries

- log10(p-value)

chr10:114748339

chr10:114748248

chr10:114748339

Type 2 diabetes
Protein levels

At 95% CI 6 SNPs, 144b
European 95% CI 5 SNPs, 864a
Non-European 95% CI 31 SNPs, 692b

Position on chr10 (Mb)
2. Author Contributions

Steering Committee Overseeing the Consortium

Writing Group

Data Cleaning and Preparation

Damien C. Croteau-Chonka, Felix R. Day, Tonu Esko, Tove Fall, Teresa Ferreira, Stefan Gustafsson, Zoltán Kutalik, Adam E. Locke, Jian’an Luan, Reedik Mägi, Joshua C. Randall, André Scherag, Sailaja Vedantam, Thomas W. Winkler, Andrew R. Wood, Tsegasellassie Workalemahu

GWAS Look-ups in Other Consortia

(ADIPOGen Consortium) Zari Dastani, ADIPOGen Consortium; (CARDIOGRAMplusC4D) CARDIOGRAMplusC4D, Panos Deloukas, Stavroula Kanoni, Sekar Kathiresan; (ENDOMETRIOSIS GWAS) Grant W. Montgomery, Dale R. Nyholt, Krina T. Zondervan, The International Endogene Consortium; (FinnDiane/GENIE) Niina Sandholm; (GENIE) Eoin P. Brennan, Amy Jayne McKnight, Rany M. Salem; (GENIE look up) The GENIE Consortium; (GLOBAL LIPIDS look up) The GLGC, (ICBP look up) The IBPC; (CNV) Robert E. Handsaker, Steven A. McCarroll; (IgA Nephropathy) Krzysztof Kiryluk, Richard P. Lifton; (MAGIC look up) Robert A. Scott, MAGIC (Meta-Analyses of Glucose and Insulin-Related Traits Consortium) investigators; (ReproGen) Joanne M. Murabito, John R.B. Perry, Lisette Stolk, The ReproGen Consortium; (CKDGen) CKDGen Consortium

Gene Expression (eQTL) Analyses

(Brain Eqtl) Ruth J.F. Loos, Jing Hua Zhao; (EGCUT) Tonu Esko, Andres Metspalu, Eva Reinmaa; (eQTL Liver/Omental/Subq eSNPs) Eric E. Schadt; (MolOBB) Alexander Werner Drong, Fredrik Karpe, Josine L. Min, George Nicholson; (MuTHER) Åsa K. Hedman, Sarah Keildson, MuTHER Consortium

Other Analyses and Contributions

(Health and Retirement Study) Wei Zhao, Jennifer A. Smith, Jessica D. Faul, David R. Weir; (DEPICT) Rudolf Fehrmann, Lude Franke, Joel N. Hirschhorn; Juha Karjalainen, Tune H. Pers; (ENCODR) Martin L. Buchkovich, Jin Chen, Ellen M. Schmidt, Cristen J. Willer; (QIMR cohort) Michael E. Goddard, Anna A.E. Vinkhuyzen, Peter M. Visscher, Jian Yang

Project Design, Management and Coordination of Contributing Studies
METABOCHIP STUDIES

(ADVANCE) Themistocles L. Assimes, Joshua W. Knowles, Thomas Quertermous; (AMCPAS) John Kastelein, Panos Deloukas; (ARIC Metabochip) Eric Boerwinkle, Kari E. North; (B1958C) Elina Hypponen, Chris Power; (BHS MC) John Beilby, Jennie Hui; (CARDIOGENICS) Panos Deloukas; (CLHNS) Linda S. Adair, Karen L. Mohlke; (DESIR) Stéphane Cauchi, Philippe Froguel; (DIAGEN) Stefan R. Bornstein, Peter E.H. Schwarz; (DILGOM) Pekka Jouilahti, Antti M. Jula, Satu Männistö, Markus Perola, Veikko Salomaa; (DR’s EXTRA) Timo A. Lakka, Rainer Rauramaa; (Dundee – GoDarts) Colin Neil Alexander Palmer; (EAS) Jackie F. Price; (EGCUT) Andres Metspalu; (ELY) Nita G. Forouhi, Claudia Langenberg, Ruth J.F. Loos, Ken K. Ong, Robert A. Scott, Nicholas J. Wareham; (EMIL (SWABIA)) Bernhard O. Boehm; (EPIC -Norfolk) Nita G. Forouhi, Claudia Langenberg, Ruth J.F. Loos, Ken K. Ong, Robert A. Scott, Nicholas J. Wareham; (FIN-D2D 2007) Sirkka M. Keinanen-Kuukanniemi, Timo E. Saaristo; (FUSION stage 2) Francis S. Collins, Jouko Saramies, Jaakko Tuomilehto; (GLACIER) Paul W. Franks; (GxE) Richard S. Cooper, Joel N. Hirschhorn, Colin A. McKenzie; (HNR) Raimund Erbel, Karl-Heinz Jöckel, Susanne Moebus; (HUNT 2) Kristian Hveem; (IMPROVE) Ulf de Faire, Anders Hamsten, Steve Humphries, Elena Tremoli; (KORA S3 (MetaboChip)) Iris M. Heid, Annette Peters, Konstantin Strauch, H.-Erich Wichmann; (Leipzig adults) Michael Stumvoll; (LURIC), Winfried März; (MEC Metabochip) Christopher Haiman, Loic Le Marchand; (METSIM) Johanna Kanerva, Markku Laakso; (MORAGM) Philippe Amouyel, Dominique Arveiler, Giancarlo Cesana, Jean Ferrières, David-Alexandre Trégouët, Jarmo Virtamo; (MRC NSHD) Diana Kuh; (PACU) Erik Ingelsson; (PROMIS) John Danesh, Panos Deloukas, Danish Saleheen, Elena Tremoli; (SardiNIA) Gönçalo R. Abecasis, David Schlessinger; (ScarfSheep) Ulf de Faire, Anders Hamsten; (SPT) Richard S. Cooper, Joel N. Hirschhorn, Colin A. McKenzie; (STR) Erik Ingelsson; (Tandem) Murielle Bochud, Pascal Bovet; (THISEAS) George Dedoussis, Panos Deloukas; (Tromsø) Inger Njølstad; (ULSAM) Erik Ingelsson; (WHI Metabochip) Charles Cooperberg, Ulrike Peters; (Whitehall) Aroon D. Hingorani, Mika Kivimaki, Nick Wareham; (WTCCC-T2D) Mark I. McCarthy, Cecilia M. Lindgren; (DietGeneExpression (DGE)) Berit Johansen

NEW GWAS

(All LOLIPOP Studies) John C. Chambers, Jaspal S. Kooner; (ASCOT) Mark J. Caulfield, Peter Sever; (Atheros-Express Biobank Studies) Folkert W. Asselbergs, Hester M. de Ruijter, Frans L. Moll, Gerard Pasterkamp; (Busselton Health Study) John Beilby, Jennie Hui; (COROGENE) Markus Perola, Juha Sinisalo; (DESIR) Stéphane Cauchi, Philippe Froguel; (DNBC) Mads Melbye, Jeffrey C. Murray; (EGCUT) Andres Metspalu; (ERF) Ben A. Oostra, Cornelia M. van Duijn; (FamHS) Ingrid B. Boerckel; (FINGESTURES) John D. Rioux; (GOOD) Claes Ohlsson; (HBCS) Johan G Eriksson; (Health ABC) Tamara B. Harris, Yongmei Liu; (HERITAGE Family Study) Claude Bouchard, D.C. Rao, Mark A. Sarzynski; (HYPERGENES) Daniele Cusi; (IPM BioMe) Erwin P. Bottinger, Ruth J.F. Loos; (LifeLines) The Lifelines Cohort Study; (LLS) P. Eline Slagboom; (MGS) Pablo V. Gejman; (NELSON) Paul I.W. de Bakker, Pieter Zanen; (PLCO2) Sonja I. Berndt, Stephen J. Chanock; (PREVEND) Pim van der Harst; (PROCARDIS) Martin Farrall, Hugh Watkins; (PROSPER/PHASE) Ian Ford, J. Wouter Jukema, Naveed Sattar; (QFS) Claude Bouchard, André Marette, Louis Pérusse, Angelo Tremblay, Marie-Claude Vohl; (QIMR Polygene) Heath C. Andrew, Nicholas G. Martin, Madden A.F. Pamela; (RISC) Timothy M. Frayling, Mark Walker; (RSII) Oscar H. Franco, Albert Hofman, Fernando Rivadeneira, André G. Uitterlinden, Cornelia M. van Duijn, Jacqueline C. Witteman, M. Carola Zillikens; (RSIII) Oscar H. Franco, Albert Hofman, Fernando Rivadeneira, André G. Uitterlinden, Cornelia M. van
Duijn, Jacqueline C. Witteman, M. Carola Zillikens; (SHIP-TREND) Henri Wallaschofski; (Sorbs) Anke Tönjes; (TRAILS) Albertine J. Oldehinkel, Harold Snieder; (TWINGENE) Erik Ingelsson; (TwinsUK) Tim D. Spector; (WGHS) Paul M. Ridker

PREVIOUS GWAS

(AGES) Vilmundur Gudnasson, Tamara B. Harris; (Amish) Alan R. Shudiner; (ARIC GWAS) Kari E. North; (B58C T1D CONTROLS) David P. Strachan; (B58C WTCCC) David P. Strachan; (BRIGHT) Anna F. Dominiczak, Martin Farrall; (CAPS) Erik Ingelsson; (COLAUS) Gérard Waerber, Dawn Waterworth; (CROATIA-Vis) Igor Rudan; (deCODE) Kari Stefansson, Unnur Thorsteinsdottir; (DGI) Leif C. Groop; (EGCUT) Andres Metspalu; (EPIC-Norfolk) Jing Hua Zhao; (Fenland) Nicholas J. Wareham; (Finnish Twin Cohort) Jaakko Kaprio; (HIPF) David Hunter; (KORA S4 (GWA)) Christian Gieger; (MICROS) Andrew A. Hicks, Peter P. Pramstaller; (NFBC66) Marjo-Riitta Jarvelin; (NHS) David Hunter; (ORCADES) Harry Campbell; (PCO) Sonja I. Berndt, Stephen J. Chanock; (RSI) Oscar H. Franco, Albert Hofman, Fernando Rivadeneira, André G. Uitterlinden, Cornelia M. van Duijn, Jacqueline C. Witteman, M. Carola Zillikens; (RUNMC) Lambertus A. Kiemeney; (SASBAC) Erik Ingelsson; (SHIP) Henri Wallaschofski; (WTCCC-CAD) Alistair S. Hall, Nilesh J. Samani; (WTCCC-T2D) Mark I. McCarthy, Cecilia Lindgren; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T. Raitakari

Genotyping of Contributing Studies

METABOCHIP STUDIES

(ADVANCE) Devin Absher, Themistocles L. Assimes, Joshua W. Knowles, Thomas Quertermous; (AMCPAS) Kathleen Stirrups; (ARIC Metabochip) Eric Boerwinkle, Kari E. North; (B1958C) Neil R. Robertson, Christopher J. Groves, Thorhildur Juliusdottir; (BHS MC) Gillian M. Arscott, Jennie Hui; (CARDIOGENICS) Kathleen Stirrups; (CLHNS) Damien C. Croteau-Chonka; (DESIR) Elodie Eury, Stéphane LOBBENS; (DIAGEN); (DPS; DR’s EXTRA) Amy J. Swift; (Dundee – GoDarts) Nigel William Rayner, Amanda J. Bennett, Colin Neil Alexander Palmer; (EAS) James F. Wilson; (EGCUT) Tõnu Esko, Lili Milani; (ELY) Claudia Langenberg, Ruth J.F. Loos, Ken K. Ong, Nicholas J. Wareham; (EMIL (SWABIA)) Bernhard O. Boehm; (EPIC-Norfolk) Claudia Langenberg, Ruth J.F. Loos, Ken K. Ong, Nicholas J. Wareham; (FBPP) Aravinda Chakravarti; (Fenland) Claudia Langenberg, Ruth J.F. Loos, Ken K. Ong, Nicholas J. Wareham; (FIN-D2D 2007) Peter S. Chines; (FUSION stage 2) Leena Kinnunen; (GLACIER) Inês Barroso; (HNR) Markus M. Noethen; (HUNT 2) Mario A. Morken; (KORA S4 (MetaboChip)), Harald Grallert, Peter Lichtner; (Leipzig adults) Yvonne Böttcher, Peter Kovacs; (LURIC) Marcus E. Kleber; (MEC Metabochip), Christopher Haiman; (METSIM) Amy J. Swift; (MRC NSHD) Diana Kuh, Ken K. Ong, Andrew Wong; (PIVUS) Christian Berne, Erik Ingelsson, Lars Lind, Johan Sundström, Kathleen Stirrups; (SardiNIA) Ramaiah Nagaraja, Serena Sanna; (ScarfSheep) Bruna Gigante; (STR) Nancy L. Pedersen; (Tandem) Georg B. EHRET, François Mach; (THISEAS) Kathleen Stirrups; (Tromsø) Lori L Bonnycastle; (ULSAM) Johan Årnlöv, Erik Ingelsson, Ann-Cristine Syvänen; (WHI Metabochip), Charles Kooperberg, Ulrike Peters; (Whitehall) Claudia Langenberg; (WTCCC-T2D) Mark I. McCarthy, Andrew Tym Hattersley; (DietGeneExpression (DGE)) Berit Johansen

NEW GWAS
(All LOLIPOP Studies) John C. Chambers Jaspal S. Kooner; (ASCOT) Patricia B. Munroe; (Athero-Express Biobank Study) Sander W. van der Laan; (Busselton Health Study) John Beilby, Jennie Hui; (DESIR) Elodie EURY, Stéphane LOBBENS; (EGCUT) Tōnū Esko, Lili Milani; (ERF) Aaron Isaacs, Ben A. Oostra, Cornelia M. van Duijn; (FamHS) Ingrid B. Borecki, Warwick E. Daw, Mary F. Feitosa, Aldi T. Kraja, Mary K. Wojczynski, Qunyuan Zhang; (GOOD) Claes Ohlsson; (Health ABC) Yongmei Liu; (HERITAGE Family Study) Mark A. Sarzynsky; (IPM BioMe) Erwin P. Bottinger; (LifeLines) Morris A. Swertz, The LifeLines Cohort Study; (LLS) Quinta Helmer; (MGS) Pablo V. Gejman; (NELSON) Joanna Smolonska; (PLCO2) Stephen J. Chanock, Kevin B. Jacobs, Zhaoming Wang; (PREVEND) Folkert W. Asselbergs, Irene Mateo Leach, Pim van der Harst; (PROCARDIS) John F. Peden; (PROSPER/PHASE) J. Wouter Jukema, P. Eline Slagboom, Stella Trompet; (QFS) Claire Bellis, John Blangero; (RSII) Karol Estrada, Fernando Rivadeneira, André G. Uitterlinden; (RSIII) Karol Estrada, Fernando Rivadeneira, André G. Uitterlinden; (SHIP-TREND) Georg Homuth, Uwe Völker; (TRAILS) Marcel Bruinenberg, Catharina A. Hartman; (TWINGENE) Anders Hamsten, Nancy L. Pedersen; (TwinsUK) Massimo Mangino, Alireza Moayyeri; (WGHS) Daniel I. Chasman, Lynda M. Rose;

PREVIOUS GWAS

(AGES) Albert Vernon Smith; (Amish) Jeffrey R. O’Connell; (B58C T1D CONTROLS) Wendy L. McArdle; (B58C WTCCC) Wendy L. McArdle; (BRIGHT) Martin Farrall; (CAPS) Henrik Grönberg; (COLAUS) Dawn Waterworth; (CROATIA-Vis) Caroline Hayward; (EGCUT) Mari Nelis; (Fenland) Nicholas J. Wareham; (Finnish Twin Cohort) Jaakkko Kaprio; (FUSION) Lori L. Bonnycastle; (KORA S3 (GWA)) Thomas Illig; (KORA S4 (GWA)) Martina Müller-Nuraisid; (MICROS) Andrew A. Hicks; (NFBC66) Marjo-Riitta Jarvelin; (ORCADES) Alan F. Wright; (PLCO) Stephen J. Chanock; (RSI) Karol Estrada, Fernando Rivadeneira, André G. Uitterlinden; (SASBAC) Per Hall; (SHIP) Georg Homuth, Uwe Völker; (WTCCC-CAD) Alistair S. Hall, Nilesh J. Samani; (WTCCC-T2D) Mark I. McCarthy, Andrew Tym Hattersley; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T. Raitakari

Phenotype Coordination of Contributing Studies

METABOCHIP STUDIES

(ADVANCE) Alan S. Go, Thomas Quertermous; (AMC-PAS) Kees G. Hovingh; (ARIC Metabochip) Eric Boerwinkle; (B1958C) Elina Hypponen, Chris Power; (BHS MC) Alan L. James, Arthur Willian (Bill) Musk; (CARDIOGENICS) Alison H Goodall, Christian Hengstenberg; (CLHNS) Isabelita N. Bas, Nanette R. Lee; (DESIR) Gaëlle Gusto; (DIAGEN) Jürgen Gräßler, Gabriele Müller; (DPS) Jaana Lindström, Heather M. Stringham; (DR’s EXTRA) Maija Hassinen, Heather M. Stringham; (Dundee – GoDarts) Andrew David Morris, Colin Neil Alexander Palmer, Alex Surendra Fleetwood DoneyEAS, Stella McLachlan; (EGCUT) Tōnū Esko, Andres Metspalu; (ELY) Nita G. Forouhi, Nicholas J. Wareham; (EMIL (SWABIA)), Roza Blagieva,Bernhard O. Boehm, Wolfgang Kratzer, Sigrun Merger, Thomas Seufferlein, Koenig Wolfgang; (EPIC-Norfolk) Nita G. Forouhi, Nicholas J. Wareham; (FBPP) Richard Cooper, Steven C Hunt; (Fenland) Nita G. Forouhi, Nicholas J. Wareham; (FIN-D2D 2007; FUSION stage 2) Heath M. Stringham; (GLACIER) Goran Hallmans; (GxE) Terrence Forrester, Bamiidele O. Tayo; (HNR) Raimund Erbel, Karl-Heinz Jöckel, Susanne Moebus; (HUNT 2) Oddgeir Holmen; (KORA S3 (MetaboChip)) Wolfgang Koenig, Barbara Thorand, Annette Peters, H.-Erich Wichmann; (Leipzig adults) Matthias Blüher; (MEC Metabochip) Lynne Wilkens; (METSIM) Heather M. Stringham; (MRC NSHD) Diana Kuh; (PIVUS) Christian Berne, Erik Ingelsson, Lars Lind, Johan Sundström; (PROMIS) Danish Saleheen; (SardinNIA) Antonella Mulas; (ScarFsheep) Karin Leander; (SPT) Terrence Forrester, Bamiidele O. Tayo, Nancy L. Pedersen; (Tandem) Murielle Bochud,
NEW GWAS

(All LOLIPOP Studies) John C. Chambers, Jaspal S. Kooner, William R. Scott, Sian-Tsung Tan; (ASCOT) Mark J. Caulfield, Peter Sever, Alice V. Stanton; (Athero-Express Biobank Study) Frans L. Moll; (Busselton Health Study) John Beilby, Jennie Hui; (DESIR) Gaëlle Gusto; (DNBC) Heather Allison Boyd, Bjärke Feenstra, Frank Geller; (EGCUT) Tōnu Esko, Andres Metspalu; (ERF) Ben A. Oostra, Cornelia M. van Duijn; (FamHS) Ingrid B. Borecki, Mary F. Feitosa; (GOOD) Claes Ohlsson, Liesbeth Vandenput; (Health ABC) Melissa E. Garcia, Tamara B. Harris, Michael A. Nalls; (HBCS) Johan G. Eriksson; (HERITAGE Family Study) Claude Bouchard; (HYPERGENES) Daniele Cusi; (IPM BioMe) Omri Gottesman; (LifeLines) Salome Scholtens, Morris A. Swertz, Judith M. Vonk, The LifeLines Cohort Study; (LLS) Anton J.M. de Craen; (MGS) Pablo V. Gejman; (NELSON) Dirkje S. Postma; (PLCO2) Sonja I. Berndt; (PREVEND) Stephan J.L. Bakker, Ron T. Gansevoort; (PROCARDIS) Robert Clarke, Anders Hamsten; (PROSPER/PHASE) Anton J.M. de Craen, Ian Ford, J. Wouter Jukema, Naveed Sattar; (QFS) Claude Bouchard, Angelo Trembay; (QIMR Polygene) Heath C. Andrew, Nicholas G. Martin, Madden A.F. Pamela; (RSII) Oscar H. Franco; Albert Hofman, Fernando Rivadeneira, André G. Uitterlinden, Cornelia M. van Duijn, Jacqueline C. Witteman; (SHIP-TREND) Stephan B. Felix, Hans-Jörgen Grabe, Roberto Lorbeer, Rainer Rettig; (Sorbs) Anke Tönjes; (TRAILS) Catharina A. Hartman, Ronald P. Stolk, F.C. Verhulst; (TWINGENE) Patrik KE Magnusson, Nancy L. Pedersen; (TwinsUK) Massimo Mangino, Cristina Menni; (WGHS) Daniel I. Chasan, Lynda M. Rose

PREVIOUS GWAS

(Amish) Alan R. Shudiner; (B58C T1D CONTROLS) David P. Strachan; (B58C WTCCC) David P. Strachan; (BRIGHT) Anna F. Dominiczak; (CAPS) Henrik Grönberg; (CHS) Yii-Der Ida Chen; (COLAUS) Gérard Waebber, Dawn Waterworth; (CROATIA-Vis) Igor Rudan; (DGI) Valeriya Lyssenko; (EGCUT) Andres Metspalu; (Fenland) Nicholas J. Wareham; (Finnish Twin Cohort) Jaakko Kaprio, Markku Koskenvuo; (FUSION) Heath M. Stringham; (NFC66) Marjo-Riitta Jarvelin, Jaana Laitinen; (NTRNESDA) Gonneke Willemsen; (ORCADES) Alan F. Wright; (PLCO) Sonja I. Berndt; (RSI) Oscar H. Franco, Albert Hofman, Fernando Rivadeneira, André G. Uitterlinden, Cornelia M. van Duijn, Jacqueline C. Witteman; (SASBAC) Per Hall; (SHIP) Stephan B. Felix, Hans-Jörgen Grabe, Roberto Lorbeer, Rainer Rettig; (UKBS-CC) Jennifer Jolley; (WTCCC-CAD) Alistair S. Hall, Niles J. Samani; (WTCCC-T2D) Andrew Tym Hattersley; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T. Raitakari

Data Analysis

METABOCHIP STUDIES

(ADVANCE) Devin Absher, Themistocles L. Assimes, Lindsay L. Waite; (AMCPAS) Stavroula Kanoni; (ARIC Metabochip) Steven Buyske, Anne E. Justice, Kari E. North; (B1958C) Teresa Ferreira; (BHS MC) Denise Anderson; (CARDIOGENICS) Stavroula Kanoni; (CLHNS) Damien C. Crouseau-Chonka; (DESIR) Stéphane Cauchi, Loïc Yengo; (DGE DietGeneExpression) Ida H. Caspersen; (DIAGEN) Anne U. Jackson, Gabriele Müller; (DILGOM) Kati Kristiansson; (DPS; DR’s EXTRA) Anne U. Jackson; (Dundee – GoDarts) Teresa
Ferreira; (EAS) Jennifer L. Bolton, Ross M. Fraser; (EGCUT) Tõnu Esko, Krista Fischer, Evelin Mihailov; (ELY) Jian’an Luan; (EMIL (SWABIA)) Bernhard O. Boehm, Wolfgang Kratzer; (EPIC-Norfolk) Jian’an Luan; (FBPP) Aravinda Chakravarti, Georg B. Ehret; (Fenland) Jian’an Luan; (GLACIER) Frida Renstrom, Dmitry Shungin; (FUSION stage 2) Anne U. Jackson; (GxE) Cameron D. Palmer; (HNR) Sonali Pechivanis, André Scherag; (HUNT 2) Anne U. Jackson; (IMPROVE) Lasse Folkersen, Rona J. Strawbridge; (KORA S3 (MetaboChip)), Mathias Gorski, Janina S. Ried, Thomas W. Winkler; (KORA S4 (MetaboChip)) Eva Albrecht; (Leipzig adults) Anubha Mahajan, Inga Prokopenko; (LURIC) Graciela Delgado de Moissl, Tanja B. Grammer, Marcus E. Kleber, Stefan Pilz, Hubert Scharnagl; (MEC Metabochip) Unhee Lim, Fred Schumacher; (METSIM) Alena Stančáková; (MRC NSHD), Jian’an Luan, Andrew Wong; (PIVUS) Stefan Gustafsson, Erik Ingelsson; (PREVEND) Irene Mateo Leach, Pim van der Harst, Niek Verweij; (PROCCARDIS) Anuj Goel, John F. Peden; (QFS) John Blangero, Louis Pérusse; (QIMR Polygene) Scott D. Gordon, Sarah E. Medland, Dale R. Nyholt; (RISC) Dorota Pasko, Andrew R. Wood; (RSII) Karol Estrada, Carolina Medina-Gomez, Marjolein Peters, Fernando Rivadeneira, André G. Uitterlinden; (SHIP -TREND) Alexander Teumer; (Sorbs) Reedik Mägi; (SPT) Cameron D. Palmer, Stefan Gustafsson, Erik Ingelsson; (WHI Metabochip) Jian Gong, Jeffrey Haessler; (Whitehall) Jian’An Luan; (WTCCC-T2D) Andrew P. Morris, Teresa Ferreira, Anubha Mahajan, Reedik Mägi

NEW GWAS

(Athero-Express Biobank Studies) Sander W. van der Laan; (DESIR) Stéphane Cauchi, Loïc YENGO; (DNBC) Bjarke Feenstra, Frank Geller; (EGCUT) Tõnu Esko, Krista Fischer, Toomas Haller, Reedik Mägi; (ERF) Najaf Amin, Ayse Demirkan; (FamHS) Mary F. Feitosa; (FINGESTURE) Ken Sin Lo; (GOOD) Claes Ohlsson, Liesbeth Vandenput; (HBCS) Niina Eklund; (Health ABC) Michael A. Nalls; (HERITAGE Family Study) Claude Bouchard, Tuomo Rankinen, D.C. Rao, Treva Rice, Mark A. Sarzynski, Yun Ju Sung; (HYPERGENES) Daniele Cusi, Zoltán Kutalik; (InCHIANTI) Andrew R. Wood, Dorota Pasko; (IPM BioMe) Janina Jeff, Vaneet Lotay, Yingchang Lu; (LifeLines) Ilja M. Nolte, Jana V. van Vliet-Ostaptchouk; (LLS) Marian Beekman, Stefan Böhringer, HaeWon Uh; (LOLIPOP) Guohong Deng, Weihua Zhang; (MGS) Jianxin Shi; (NELSON) Stephan Ripke, Jessica van Setten; (PLCO2) Sonja I. Berndt, Zhaoqing Wang; (PREVEND) Irene Mateo Leach, Pim van der Harst, Nie Verweij; (PROCARDIS) Anuj Goel, John F. Peden; (PROSPER/PHASE) Anton J.M. de Craen, Ian Ford, Stella Trompet; (QFS) John Blangero, Louis Pérusse; (QIMR Polygene) Scott D. Gordon, Sarah E. Medland, Dale R. Nyholt; (RISC) Dorota Pasko, Andrew R. Wood; (RSII) Karol Estrada, Carolina Medina-Gomez, Marjolein Peters, Fernando Rivadeneira, André G. Uitterlinden; (SHIP -TREND) Alexander Teumer; (Sorbs) Reedik Mägi; (TRAILS) Harold Snieder; (TWINGENE) Stefan Gustafsson, Erik Ingelsson; (TwinsUK) Massimo Mangino; (WGHS) Daniel I. Chasman, Lynda M. Rose

PREVIOUS GWAS

(AGES) Albert Vernon Smith; (Amish) Jeffrey R. O’Connell; (ARIC GWAS) Keri L. Monda, Kari E. North; (B58C T1D CONTROLS) David P. Strachan; (B58C WTCCC) David P. Strachan; (CAPS) Erik Ingelsson; (CHS) Yii-Der Ida Chen, Barbara McKnight; (CROATIA-Vis) Caroline Hayward; (deCODE) Valgerdur Steinhorsdottir, Gudmar Thorleifsson; (EGCUT) Mari Nelis; (Fenland) Jian’an Luan; (FRAM) L. Adrienne Cupples, Nancy L. Heard-Costa; (FUSION) Anne U. Jackson; (GerMIFS II) Christina Willenborg; (Health 2000) Niina Eklund; (HPFS) Lu Qi; (KORA S3 (GWAS)) Claudia Lamina; (NHS) Lu Qi; (NSPHS) Åsa Johansson; (NTRNESDA) Jouke-Jan Hottenga; (PLCO) Sonja I. Berndt; (RISI) Karol Estrada, Carolina Medina-Gomez, Marjolein Peters, Fernando Rivadeneira, André G. Uitterlinden; (RUNMC) Sita H. Vermeulen; (SASBAC) Erik Ingelsson;
3. Acknowledgements

General acknowledgements
T.H. Pers is supported by The Danish Council for Independent Research Medical Sciences (FSS) and The Alfred Benzon Foundation.

C.J. Willer is supported by HL094535 and HL109946.

E.M. Schmidt holds a National Science Foundation Open Data fellowship (NSF 0903629).

M.L. Buchkovich is funded through NIH grant DA027040 and T32HL069768.

A.E. Justice is funded through NIH grant T32HL007055-36 and an AHA Postdoctoral Fellowship.

B. Kahali, C. Powell, and E.K. Speliotes are supported by NIH K23DK08145, The Doris Duke Foundation, Central Society for Clinical Research, and the Department of Internal Medicine and BSSP program at University of Michigan.

Cohort acknowledgements
ADIPOGen Consortium: Zari Dastani is supported by the Canadian Institutes of Health Research

ADVANCE: The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647.

AGES: The Age, Gene/Environment Susceptibility Reykjavik Study has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study.

AMC-PAS: AMC-PAS is grateful to M.D. Trip MD, PhD and S. Sivapalaratnam, MD for their input in collecting the data.

AMISH: We gratefully acknowledge our Amish liaisons, field workers and clinic staff and the extraordinary cooperation and support of the Amish community without which these studies would not have been possible. The Amish studies are supported by grants and contracts from the NIH, including U01 HL072515-06, U01 HL84756, F32AR059469, the University of Maryland General Clinical Research Center, grant M01 RR 16500, and by National Research Initiative Competitive Grant no. 2007-35205-17883 from the USDA National Institute of Food and Agriculture. We thank our Amish research volunteers for their long-standing partnership in research, and the research staff at the Amish Research Clinic for their hard work and dedication.

ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN26820110009C, HHSN26820110010C, HHSN26820110011C, and HHSN26820110012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of
Health and NIH Roadmap for Medical Research. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: I.B. Borecki, L.A. Cupples, K. North).

ARIC Metabochip: The Population Architecture Using Genomics and Epidemiology (PAGE) program is funded by the National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790 (WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The complete list of PAGE members can be found at http://www.pagestudy.org. The data and materials included in this report result from a collaboration between the following studies: The Multiethnic Cohort study (MEC) characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute (R37CA54281, R01 CA63, P01CA33619, U01CA136792, and U01CA98758); Funding support for the “Epidemiology of putative genetic variants: The Women’s Health Initiative” study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/ WHI_investigators_shortlist.pdf; Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01HG004803 and its NHGRI ARRA supplement). The following studies contributed to this manuscript and are funded by the following agencies: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022. Assistance with phenotype harmonization, SNP selection and annotation, data cleaning, data management, integration and dissemination, and general study coordination was provided by the PAGE Coordinating Center (U01HG004801-01 and its NHGRI ARRA supplement). The National Institutes of Mental Health also contributes to the support for the Coordinating Center. The PAGE consortium thanks the staff and participants of all PAGE studies for their important contributions. Dr. North is also funded by the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: I.B. Borecki, L.A. Cupples, K. North) grant R01-DK089256.

ASCOT: This work was supported by Pfizer, New York, NY, USA, for the ASCOT study and the collection of the ASCOT DNA repository; by Servier Research Group, Paris, France; and by Leo Laboratories, Copenhagen, Denmark. We thank all ASCOT trial participants, physicians, nurses, and practices in the participating countries for their important contribution to the study. In particular we thank Clare Muckian and David Toomey for their help in DNA extraction, storage, and handling.

Athero-Express Biobank Study: Genotyping was funded by Cavadis B.V. Sander W. Van der Laan is funded through grants from the Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001) and CVON (GENIUS). Folkert W. Asselbergs is supported by a clinical fellowship from the Netherlands Organisation for Health Research and Development (ZonMw grant 90700342) and by UCL Hospitals NIHR Biomedical Research Centre. Claudia Tersteeg, Krista den Ouden, Mirjam B. Smeets, and Loes B. Collé are graciously acknowledged for their work on
the DNA extraction. Astrid E.M.W. Willems, Evelyn Velema, Kristy M. J. Vons, Sara Bregman, Timo R. ten Brinke, Sara van Laar, Louise M. Catanzariti, Joyce E.P. Vrijenhoek, Sander M. van de Weg, Arjan H. Schoneveld, Petra H. Homoed-van der Kraak, and Aryan Vink are graciously acknowledged for their past and continuing work on the Athero-Express Biobank Study. We would also like to thank all the (former) employees involved in the Athero-Express Biobank Study of the Departments of Surgery of the St. Antonius Hospital Nieuwegein and University Medical Center Utrecht for their continuing work. Jessica van Setten is graciously acknowledged for her help in the quality assurance and quality control of the genotype data. We graciously thank the team of Golden Helix Inc. especially Autumn Laughbaum, Bryce Christensen, Christophe Lambert, Greta Linse Peterson, and Gabe Rudy for their continuing support in data analysis. Lastly, we would like to thank all participants of the Athero-Express Biobank Study; without you these kinds of studies would not be possible.

B1958C: Data collection was funded by MRC grant G0000934 and cell-line creation by Wellcome Trust grant 068545/Z/02. Great Ormond Street Hospital/University College London, Institute of Child Health and Oxford Biomedical Research Centre, University of Oxford receive a proportion of funding from the Department of Health's National Institute for Health Research (NIHR) ('Biomedical Research Centres' funding). This paper presents independent research and the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health.

B58C: We acknowledge use of phenotype and genotype data from the British 1958 Birth Cohort DNA collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. (http://www.b58cgene.sgul.ac.uk/). Genotyping for the B58C-WTCCC subset was funded by the Wellcome Trust grant 076113/B/04/Z. The B58C-T1DGC genotyping utilized resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. B58C-T1DGC GWAS data were deposited by the Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research (CIMR), University of Cambridge, which is funded by Juvenile Diabetes Research Foundation International, the Wellcome Trust and the National Institute for Health Research Cambridge Biomedical Research Centre; the CIMR is in receipt of a Wellcome Trust Strategic Award (079895). The B58C-GABRIEL genotyping was supported by a contract from the European Commission Framework Programme 6 (018996) and grants from the French Ministry of Research.

BHS: The Busselton Health Study (BHS) acknowledges the generous support for the 1994/5 follow-up study from Healthway, Western Australia and the numerous Busselton community volunteers who assisted with data collection and the study participants from the Shire of Busselton. The Busselton Health Study is supported by The Great Wine Estates of the Margaret River region of Western Australia.

BLSA: The BLSA was supported by the Intramural Research Program of the NIH, National Institute on Aging.

BRIGHT: This work was supported by the Medical Research Council of Great Britain (grant number G9521010D); and by the British Heart Foundation (grant number PG/02/128). A.F.D. was supported by the British Heart Foundation (grant numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). The BRIGHT study
is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. This work forms part of the research themes contributing to the translational research portfolio for Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research.

CAPS: The CAPS study was supported by grants from the Swedish Research Council, the Swedish Cancer Society, and the National Cancer Institute. E.I. was supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Society of Medicine, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science while working with this article.

CARDIOGENICS: Sample collection in the Cardiogenics Consortium (http://www.cardiogenics.eu/web/) was funded by the 6th Framework Program of the European Union (LSHM-CT-2006-037593) and supported through the Cambridge Bioresource, which is funded by the NIHR Cambridge Biomedical research Centre. We thank all the participants and clinicians involved in the recruitment process at Cambridge and Leicester (UK), Luebeck and Regensburg (Germany), and Paris (France).

CARDIOGENICS / THISEAS / AMC-PAS / PROMIS: This work was funded by the Wellcome Trust (core grant 098051). We like to thank the members of the Wellcome Trust Sanger Institute Genotyping Facility.

CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center National Center for Advancing Translational Sciences, CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Research (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views fo the National Institutes of Health.

CLHNS: We thank the Office of Population Studies Foundation research and data collection teams for the Cebu Longitudinal Health and Nutrition Survey and the Mammalian Genotyping Core at University of North Carolina at Chapel Hill. This work was supported by National Institutes of Health grants DK078150, TW05596, HL085144, TW008288, T32 HL007427 and pilot funds from RR20649, ES10126, and DK56350.

CoLaus: The CoLaus study was supported by research grants from the Swiss National Science Foundation (grant no: 33CSCO-122661) from GlaxoSmithKline and the Faculty of Biology and Medicine of Lausanne, Switzerland. The authors also express their gratitude to the participants in the Lausanne CoLaus study and to the investigators who have contributed to the recruitment, in particular the co PIs, Peter Vollenweider, Vincent Mooser, and research nurses of CoLaus: Yolande Barreau, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey, Sylvie Mermoud.

COROGENE: The study was supported by grants from Arno Koskelo Foundation, Helsinki University Central Hospital special government funds (EVO #TYH7215, #TKK2012005, #TYH2012209), and the Finnish Foundation for Cardiovascular research.
CROATIA-Vis: The CROATIA-Vis study in the Croatian island of Vis was supported through the grants from the Medical Research Council UK to H.C., A.F.W. and I.R.; and Ministry of Science, Education and Sport of the Republic of Croatia to I.R. (number 108-1080315-0302) and the European Union framework program 6 EUROSPLAN project (contract no. LSHG-CT-2006-018947). We would like to acknowledge the invaluable contributions of the recruitment team (including those from the Institute of Anthropological Research in Zagreb) in Vis, the administrative teams in Croatia and Edinburgh and the people of Vis.

deCODE: We thank participants in deCODE cardiovascular- and obesity studies and collaborators for their cooperation. The research performed at deCODE Genetics was part funded through the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007-201413.

DESIR: This study was supported in part by grants from SFD ("Société Francophone du Diabète"), CPER ("Contrat de Projets État-Région"), and ANR ("Agence Nationale de la Recherche"). The DESIR study has been supported by INSERM-CNAMTS ("Caisse Nationale de l’Assurance Maladie des Travailleurs Salariés"), Lilly, Novartis Pharma, sanofi-aventis, INSERM ("Réseaux en Santé Publique, Interactions entre les determinants de la santé"), "Association Diabète Risque Vasculaire", "Fédération Française de Cardiologie", "Fondation de France", Onivins, Ardix Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche, and Topcon.

DGI: The Botnia (DGI) study have been supported by grants from Folkhälsan Research Foundation, Sigrid Juselius Foundation, Ministry of Education, Nordic Center of Excellence in Disease Genetics, Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation, the Municipal Health Care Center and Hospital in Jakobstad, Health Care Centers in Vasa, Närpes and Korsholm. This work was also partially supported by NIH grant R01-DK075787 to JNH

DIAGEN: The DIAGEN study was supported by the Commission of the European Communities, Directorate C - Public Health and Risk Assessment, Health & Consumer Protection, Grant Agreement number - 2004310 and by the Dresden University of Technology Funding Grant, Med Drive. We are grateful to all of the patients who cooperated in this study and to their referring physicians and diabetologists in Saxony.

DILGOM: The DILGOM project and this work is supported by the Academy of Finland (grant numbers 136895, 263836, 250207, 139635, 118065), the Orion-Farmos Research Foundation, and the Finnish Foundation for Cardiovascular Research. MP is partly financially supported for this work by the Finnish Academy SALVE program “Pubgensense” 129322. We are grateful for the THL DNA laboratory for its skillful work to produce the DNA samples used in this study.

DNBC: Funding support for the Danish National Birth Cohort (DNBC) was provided by the Danish National Research Foundation, the Danish Pharmacists’ Fund, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation and the Health Fund of the Danish Health Insurance Societies. The generation of GWAS genotype data for the DNBC samples was carried out within the GENEVA consortium with funding provided through the NIH Genes, Environment and Health Initiative (GEI) (U01HG004423). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center (U01HG004446). Genotyping was performed at Johns Hopkins University Center for Inherited Disease Research, with support from the NIH GEI (U01HG004438).
DPS: The DPS has been financially supported by grants from the Academy of Finland (117844 and 40758, 211497, and 118590; The EVO funding of the Kuopio University Hospital from Ministry of Health and Social Affairs (5254), Finnish Funding Agency for Technology and Innovation (40058/07), Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014), The Finnish Diabetes Research Foundation, Yrjö Jahnsson Foundation (56358), Sigrid Juselius Foundation, Juho Vainio Foundation and TEKES grants 70103/06 and 40058/07.

DR'S EXTRA: The DR's EXTRA Study was supported by the Ministry of Education and Culture of Finland (627;2004-2011), Academy of Finland (102318; 123885), Kuopio University Hospital, Finnish Diabetes Association, Finnish Foundations for Cardiovascular Research, Päivikki and Sakari Sohlberg Foundation, by European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of Kuopio and Social Insurance Institution of Finland (4/26/2010).

EAS: The Edinburgh Artery Study (EAS) was funded by the British Heart Foundation (RG/98002). Genotyping was funded by a project grant from the Chief Scientist Office, Scotland (CZB/4/672), and undertaken at the Wellcome Trust Clinical Research Facility in Edinburgh.

Ely: We are grateful to all the volunteers and to the staff of St. Mary's Street Surgery, Ely and the study team. The Ely Study was funded by the MRC (MC_U106179471) and Diabetes UK. Genotyping in the Ely and Fenland studies was supported in part by an MRC-GLaxoSmithKline pilot programme grant (G0701863).

EMIL: Centre of Excellence Baden-Wuerttemberg “Metabolic Disorders” to BOB.

EPIC: The EPIC Norfolk diabetes case cohort study is nested within the EPIC Norfolk Study, which is supported by programme grants from the Medical Research Council, and Cancer Research UK and with additional support from the European Union, Stroke Association, British Heart Foundation, Research into Ageing, Department of Health, The Wellcome Trust and the Food Standards Agency. Genotyping was in part supported by the MRC-GSK pilot programme grant. We acknowledge the contribution of the staff and participants of the EPIC-Norfolk Study.

EPIC-Norfolk: The EPIC Norfolk study is supported by programme grants from the Medical Research Council, and Cancer Research UK. We acknowledge the contribution of the staff and participants of the EPIC-Norfolk Study.

ERF: ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection.

EGCUT: Estonian Genome Center, University of Tartu (EGCUT) received targeted financing from Estonian Government SF0180142s08, Center of Excellence in Genomics (EXCEGEN) and University of Tartu (SP1GVARENG). We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyzes were carried out in part in the High Performance Computing Center of University of Tartu.

FamHS: The Family Heart Study was supported by the by grants R01-HL-087700, and R01-HL-088215 from the National Heart, Lung, and Blood Institute. This research was partially funded by
grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: I.B. Borecki, L.A. Cupples, K. North).

FBPP: The Hypertension Genetic Epidemiology Network is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515 and by R01 HL55673. We would like to acknowledge and thank all participants in the GenNet study. Our work was funded by the NHLBI grant U10 HL054512. Georg Ehret is funded by the University of Geneva, the Swiss National Foundation, and the Fondation pour Recherches Médicales, Geneva, Switzerland.

Fenland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council (MC_U106179471). We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams.

FIN-D2D 2007: The FIN-D2D study has been financially supported by the hospital districts of Pirkanmaa, South Ostrobothnia, and Central Finland, the Finnish National Public Health Institute (current National Institute for Health and Welfare), the Finnish Diabetes Association, the Ministry of Social Affairs and Health in Finland, the Academy of Finland (grant number 129293), Commission of the European Communities, Directorate C-Public Health (grant agreement no. 2004310) and Finland’s Slottery Machine Association.

FinGesture: We thank the study participants. We also thank Juhani Juntila, Kari Kaikkonen, Marja-Leena Kortelainen, and Heikki Huikiri for study concept and design, and data acquisition and interpretation. The FinGesture cohort is supported by the Juselius Foundation (Helsinki, Finland) and the Council of Health of the Academy of Finland (Helsinki, Finland). Authors would like to thank Philippe Goyette, Sylvain Foisy, Gabrielle Boucher, Guillaume Lettre and Jean-Claude Tardif for their contributions to the design, implementation and analysis of the GWA study of the FinGesture cohort. In addition, we would like to acknowledge the support of the Montreal Heart Institute Foundation.

Finnish Twin Cohort: ENGAGE – European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413; Academy of Finland (265240, 263278)

FRAM: This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARE) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: I.B. Borecki, L.A. Cupples, K. North).

FUSION: Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.), R01-DK072193 (to K.L.M.), and intramural project number 1Z01-HG000024 (to F.S.C.). Genome-wide genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403.
GENIE: The GENIE Consortium is supported by NIH NIDDK R01 DK081923, a US Ireland R&D partnership award funded by Science Foundation Ireland under Grant No. SFI/08/US/B1517, the Northern Ireland Research Development office, and the Juvenile Diabetes Research Foundation (JDRF). The Warren 3/UK GoKinD Study Group was jointly funded by Diabetes UK and the JDRF. The FinnDiane Study Group consists of A. Ahola, E. Fagerholm, M. Feodoroff, C. Fogarty, C. Forsblom, D. Gordin, PH. Groop, V. Harjutsalo, O. Heikkilä, E. Hietala, K Hietala, S. Hägg, J. Kytö, M. Lassenius, S. Lindh, M. Lehto, R. Lithiovius, VP. Mäkinen, M. Parkkonen, L. Peräneva, K. Pettersson-Fernholm, J. Pihlman, M. Rahkonen, M. Rosengård-Bärlund, A. Sandelin, A-R Salonen, N. Sandholm, L. Salovaara, M. Sarasteimo, R. Simonsen, T. Soppela, A. Soropaa, N. Ström, A. Syreeni, J. Süderlund, L. Thorn, H. Tikkanen, N. Tolonen, J. Tuomikangas, N. Vuori, J. Wadén. The FinnDiane Study was supported by grants from the Folkhälsan Research Foundation, the Wilhelm and Else Stockmann Foundation, Liv och Hälsa Foundation, Helsinki University Central Hospital Research Funds (EVO), the Sigrid Juselius Foundation, the Signe and Ane Gyllenberg Foundation, Finska Läkaresällskapet, Academy of Finland (134379), Tekes, and the European Union's Seventh Framework Program (FP7/2007-2013) for the Innovative Medicine Initiative under grant agreement n° IMI/115006 (the SUMMIT consortium). Rany Salem was supported by a JDRF post-doctoral fellowship (#3-2011-70). We acknowledge the physicians, nurses and researchers at each center participating in the collection of participants, and we are grateful to our colleagues at the Renal Unit, Mater Misericordiae University Hospital, Dublin, Ireland.

GerMIFS I and II: The German MI Family Studies (GerMIFS I-II were supported by the Deutsche Forschungsgemeinschaft and the German Federal Ministry of Education and Research (BMBF) in the context of the German National Genome Research Network (NGFN-2 and NGFN-plus), the EU funded integrated projects Cardiogenics (LSHM-CT-2006-037593) and ENGAGE, and the bi-national BMBF/ANR funded project CARDomics (01KU0908A).

GLACIER: The GLACIER Study was funded by grants from the Swedish Diabetes Association, Swedish Heart-Lung Foundation, Swedish Research Council, Medical Research Foundation of Umeå University, and Novo Nordisk (all to PWF). We thank the participants for their outstanding contributions to the GLACIER Study. We also thank the staff of the Umeå Medical Biobank, especially Åsa Agren, John Hutilainen, and Ann-Marie Ahren for data retrieval and organisation and Kerstin Enquisit and Tore Johansson for expert assistance with DNA extraction and plating. The GLACIER Study is nested within the Västerbottens Intervention Project (VIP); we thank the staff of the VIP Study for phenotype data collection, particularly Lars Wennehall who leads the VIP Study. Inês Barroso acknowledges funding from the Wellcome Trust grant WT098051, United Kingdom NIHR Cambridge Biomedical Research Centre and the MRC Centre for Obesity and Related Metabolic Diseases. We would like to thank Emma Gray, Douglas Simpkin, Sarah Hunt and staff of the WTSI Sample Logistics, Genotyping and Variation Informatics Facilities. The authors would like to thank Sarah Edkins, Douglas Simpkin, and staff of the WTSI genotyping facility.

GoDARTS: We acknowledge the support of the Health Informatics Centre, University of Dundee for managing and supplying the anonymised data and NHS Tayside, the original data owner. We are grateful to all the participants who took part in the Go-DARTS study, to the general practitioners, to the Scottish School of Primary Care for their help in recruiting the participants, and to the whole team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. The Wellcome Trust provides support for Wellcome Trust United Kingdom Type 2 Diabetes Case Control Collection (GoDARTS) (Award 099177/Z/12/Z) and the Scottish Health Informatics Programme.
Further informatics support is provided by the Chief Scientist Office of Scotland. This work was also supported by the UK Medical Research Council (G0601261).

GOOD: Financial support was received from the Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg’s Foundation, the Novo Nordisk Foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS.

Groningen eqtl analysis: This study was supported by grants from the Celiac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch Government (grant BSIK03009), the Netherlands Organization for Scientific Research (NWO-VICI grant 918.66.620, NWO-VENI grant 916.10.135 to L.F.), the Dutch Digestive Disease Foundation (MLDS WO11-30), and a Horizon Breakthrough grant from the Netherlands Genomics Initiative (grant 92519031 to L.F.). This project was supported by the Prinses Beatrix Fonds, VSB fonds, H. Kersten and M. Kersten (Kersten Foundation), The Netherlands ALS Foundation, and J.R. van Dijk and the Adessium Foundation. The research leading to these results has received funding from the European Community’s Health Seventh Framework Programme (FP7/2007-2013) under grant agreement 259867.

GxE: Our chief acknowledgement is to the participants in these studies for their willingness to contribute. We also thank Nurses Orgen Brown and Diedre Thomas for assistance with recruitment as well as past and present Laboratory technologists and drivers at TMRU for their invaluable technical assistance. This work was supported by NIH Grants R01HL53353 and R01DK075787.

Health 2000: The Health 2000 Study was funded by the National Institute for Health and Welfare (THL), the Finnish Centre for Pensions (ETK), the Social Insurance Institution of Finland (KELA), the Local Government Pensions Institution (KEVA), and other organizations listed on the website of the survey (http://terveys2000.fi). WE are grateful for the THL DNA laboratory for its skilful work to produce the DNA samples used in this study. We thank the Sanger Institute genotyping facilities for genotyping the GenMets subcohort.

Helsinki Birth Cohort Study (HBCS): We thank all study participants as well as everybody involved in the Helsinki Birth Cohort Study. Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Study, Folkhäsen Research Foundation, Novo Nordisk Foundation, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062). We are grateful for the THL DNA laboratory for its skilful work to produce the DNA samples used in this study.

Health ABC: The Health ABC Study was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106 and, in part, by the NIA Intramural Research Program. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Md. (http://biowulf.nih.gov).

HERITAGE Family Study: The HERITAGE Family Study has been funded by National Heart, Lung, and Blood Institute grants HL-45670, HL-47323, HL-47317, HL-47327, and HL-47321 (to C. Bouchard, T. Rankinen, D.C. Rao, Arthur Leon, James Skinner, and Jack Wilmore). Thanks are expressed to Drs. Arthur Leon, James Skinner, and Jack Wilmore for their contributions to the data collection. C. Bouchard is partially funded by the John W. Barton, Sr. Chair in Genetics and
Nutrition. We thank Ms. Jessica Watkins and Ms. Kathryn Cooper for their expert contributions to GWAS and replication genotyping and DNA bank maintenance.

HNR: We thank the Heinz Nixdorf Foundation, Germany, for the generous support of this study. We acknowledge the support of the Sarstedt AG & Co. (Nümbrecht, Germany) concerning laboratory equipment. We are grateful to Prof. Dirk Schadendorf (Clinic Department of Dermatology, University Hospital Essen, Essen, Germany) for funding this study. A. Scherag and CSCC were supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1002.

Health and Retirement Study (HRS): HRS is supported by the National Institute on Aging (NIA U01AG009740). The genotyping was funded as a separate award from NIA (RC2 AG036495). Our genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at Johns Hopkins University. Genotyping quality control and final preparation were performed by the Genetics Coordinating Center at University of Washington.

HUNT2: The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health.

HYPERGENES: This study was funded by HYPERGENES (FP7 - HEALTH-F4-2007-201550); INTEROMICS (MIUR - CNR Italian Flagship Project). The HYPERGENES consortium members who took part included: 1) University of Milano and Fondazione Filarete with Daniele Cusi, Project Coordinator, Cristina Barlassina, Erika Salvi, Sara Lupoli, Maurizio Marconi, Gianna Petrin, Vincenzo Toschi; 2) Katholieke Universiteit Leuven, with Jan Staessen, Jan Staessen, Tatiana Kuznetsova, Lutgarde Thijs; 3) Jagiellonian University Medical College, Krakow, with Kalina Kawecka-Jaszcz, Katarzyna Stolarz, Agnieszka Olszanecka, Wiktoria Wojciechowska; 4) IBM Israel – Science and Technology LTD, with Amnon Shabo, Ariel Frakash, Simona Cohen, Boaz Carmeli, Dan Pelleg, Michal Rosen-Zvi, Hani Nevrith-Telem; 5) I.M.S. – Istituto di Management Sanitario S.r.l., Milan, with Pietro Conti, Costanza Conti, Mariella D’Alessio; 6) Institute of Internal Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, with Yuri Nikitin, Sofia Malyutina, M. Voeyvoda, Andrew Ryabikov, E. Pello, Maxim Ryabikov; 7) Imperial College of Science, Technology and Medicine, with Paolo Vineis and Clive J Hoggart; 8) INSERM – Institut National de la Santé et de la Recherche Médicale U772, with Xavier Jeunemaitre, Pierre-François Plouin, Anne-Paule Gimenez-Roqueplo, Rosa Vargas-Poussou, Geneviève Beaurain; 9) University of Warwick. Cardiovascular Medicine & Epidemiology Group, Clinical Sciences Research Institute, with Francesco P Cappuccio, Michelle A Miller, Chen Ji; 10) Università degli Studi di Sassari. Hypertension and cardiovascular prevention centre, with Nicola Glorioso, Chiara Maria Troffa, Giuseppe Argiolas, Francesca Fau, Silvia Pitzi; 11) STMICROELECTRONICS SRL, with Enrico Rosario Alessi; 12) Universite de Lausanne. Department of Medical Genetics, with Carlo Rivolta, Jacques S. Beckmann, Zoltan Kutilik, Paola Benaglio; 13) Pharmnext S.A.S., Paris, with Daniel Cohen and Ilya Chumakov; 14) Soffeco Sismat Spa, Genova, with Stefano Bianchi; 15) Shanghai Institute of Hypertension, with Jiguang Wang and Li Yan; 16) Charles University in Prague. Department of Internal Medicine II, Pilsen, with Jan Filipovsky, Otto Mayer, Milan Hromadka, Jitka Seidlerova, Milena Dalejkova, Lukas Handl; 17) Università degli Studi di Padova. Department of Clinical and Experimental Medicine, with Edoardo Casiglia, Valerie Tikhonoff, Laura Schiavon, Anna Bascelli, Elisa Pagnin; 18) Medical University of Gdansk. Hypertension Unit, Department of Hypertension and Diabetology, with Krzysztof Narkiewicz, Marzena Chrostowska, Radoslaw Szczech, Michal Hoffmann; 19) University Vita-
Salute San Raffaele, with Paolo Manunta, Chiara Lanzani, Maria Teresa Sciarrone, Lorena Citterio, Laura Zagato.

IgA Nephropathy GWAS: This study was supported by the following grants from the NIH/NIDDK: K23DK090207 (K Kiryluk), RC1DK087445 (AG Gharavi, RP Lifton)

IMPROVE: European Commission (LSHM-CT-2007-037273), the Swedish Heart-Lung Foundation, the Swedish Research Council (8691), the Knut and Alice Wallenberg Foundation, the Foundation for Strategic Research, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Programme of Karolinska Institutet and the Stockholm County Council and the Stockholm County Council (560183). S.E.H. is funded by the British Heart Foundation (PG008/08) and is supported by the National Institute for Health Research, University College London Hospitals Biomedical Research Centre.

InCHIANTI: This work was supported by the Wellcome Trust 083270/Z/07/Z. The InCHIANTI study was supported by contract funding from the U.S. National Institute on Aging (NIA), and the research was supported in part by the Intramural Research Program, NIA, and National Institute of Health (NIH). The InCHIANTI study baseline (1998-2000) was supported as a "targeted project" (ICS1110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336); the InCHIANTI Follow-up 1 (2001-2003) was funded by the U.S. National Institute on Aging (Contracts: N.1-AG-1-1 and N.1-AG-1-2111)

International Endogene Consortium: The Endometriosis GWAS was supported by grants from the Wellcome Trust (WT084766/Z/08/Z) and National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). Dale R. Nyholt was supported by the NHMRC Fellowship (339462 and 613674) and Australian Research Council (ARC) Future Fellowship (FT0991022) schemes. Grant W. Montgomery was supported by were supported by the NHMRC Fellowship scheme (339446 and 619667). Krina T. Zondervan was supported by a Wellcome Trust Career Development Fellowship (WT085235/Z/08/Z).

IPM BioMe: The Mount Sinai Biobank Program is supported by The Andrea and Charles Bronfman Philanthropies.

KORA S3/KORA S4: The KORA research platform (KORA, Cooperative Research in the Region of Augsburg) was initiated and financed by the Helmholtz Zentrum München - German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. Part of this project was supported by BMBF grant number 01GS0823, by the German National Genome Research Network (NGFNPlus, project number 01GS0823 and project number 01GS0834) and through additional funds from the University of Ulm.

Leipzig adults: This work was supported by grants from the German Research Council (SFB-1052 “Obesity mechanisms”), from the German Diabetes Association and from the DHFD (Diabetes Hilfs- und Forschungsfonds Deutschland). Peter Kovacs is funded by the Boehringer Ingelheim Foundation. IFB AdiposityDiseases is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001. This work was further supported by the Kompetenznetz Adipositas (Competence network for Obesity) funded by the Federal Ministry of Education and Research (German Obesity Biomaterial Bank; FKZ 01GI1128). Inga Prokopenko was funded in part through the European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007-201413.
LifeLines: The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. We thank Behrooz Alizadeh, Annemieke Boesjes, Marcel Bruinenberg, Noortje Festen, Pim van der Harst, Ilja Nolte, Lude Franke, Mitra Valimohammadi for their help in creating the GWAS database, and Rob Bieringa, Joost Keers, René Oostergo, Rosalie Visser, Judith Vonk for their work related to data-collection and validation. The authors are grateful to the study participants, the staff from the LifeLines Cohort Study and Medical Biobank Northern Netherlands, and the participating general practitioners and pharmacists.

LLS: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2011) under grant agreement number 259679. This study was financially supported by the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), by Unilever Colworth and by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007).

LOLIPOP: The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the NIHR Cardiovascular Biomedical Research Unit of Royal Brompton and Harefield NHS Foundation Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust (084723/Z/08/Z) the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing Loss (G51). We thank the participants and research staff who made the study possible. G. Deng was supported by Chongqing Natural Science Foundation For Distinguished Young Scholars (grant no. CSTC2011JJJQ10005) and the State Key Project Specialized for Infectious Diseases (2012ZX10002007-002-005).

LOLIPOP_EW610: The LOLIPOP study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP.

LOLIPOP_EWA: We thank GSK for supporting and genotyping of the data.

LOLIPOP_EWP: The LOLIPOP study was supported by the British Heart Foundation Grant (SP/04/002).

LURIC: We extend our appreciation to the participants of the LURIC study; without their collaboration, this article would not have been written. We thank the LURIC study team who were either temporarily or permanently involved in patient recruitment as well as sample and data handling, in addition to the laboratory staff at the Ludwigshafen General Hospital and the Universities of Freiburg and Ulm, Germany. LURIC has received funding from the 6th Framework Program (integrated project Bloodomics, grant LSHM-CT-2004-503485) and from the 7th Framework Program (Atheroremo, grant agreement number 201668 and RiskyCAD, grant agreement number 305739) of the European Union.

MEC Metabochip: The Population Architecture Using Genomics and Epidemiology (PAGE) program is funded by the National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790.
(WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The complete list of PAGE members can be found at http://www.pagestudy.org. The data and materials included in this report result from a collaboration between the following studies: The Multiethnic Cohort study (MEC) characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute (R37CA54281, R01 CA63, P01CA33619, U01CA136792, and U01CA98758); Funding support for the “Epidemiology of putative genetic variants: The Women’s Health Initiative” study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/ WHI_investigators_shortlist.pdf; Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01HG004803 and its NHGRI ARRA supplement). The following studies contributed to this manuscript and are funded by the following agencies: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022. Assistance with phenotype harmonization, SNP selection and annotation, data cleaning, data management, integration and dissemination, and general study coordination was provided by the PAGE Coordinating Center (U01HG004801-01 and its NHGRI ARRA supplement). The National Institutes of Mental Health also contributes to the support for the Coordinating Center. The PAGE consortium thanks the staff and participants of all PAGE studies for their important contributions. **METSIM:** The METSIM study was funded by the Academy of Finland (grants no. 77299 and 124243), the Finnish Diabetes Research Foundation, the Finnish Cardiovascular Research Foundation, the Strategic Research Foundation from the University of Eastern Finland, Kuopio, Finland, and EVO Grant 5263 from the Kuopio University Hospital. **MGS:** The Molecular Genetics of Schizophrenia project was carried out by 10 research sites and PIs: Pablo V. Gejman, Study Coordinator (Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, and Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, IL), Douglas F. Levinson (Stanford University), Bryan J. Mowry (University of Queensland), Donald Black (University of Iowa), Robert Freedman (University of Colorado), C. Robert Cloninger (Washington University), Jeremy Silverman (Mt. Sinai Medical School), Nancy Buccola (Louisiana State University - New Orleans), William Byerley (University of California at San Francisco), and Farooq Amin (Emory University). This study was supported by NIH R01 grants (MH67257 to N.B.G., MH59588 to B.J.M., MH59571 to P.V.G., MH59565 to R.F., MH59587 to F.A., MH60870 to W.F.B., MH59566 to D.W.B., MH59586 to J.M.S., MH61675 to D.F.L., MH60879 to C.R.C., and MH81800 to P.V.G.), NIH U01 grants (MH79469 to P.V.G., and MH79470 to D.F.L.), NARSAD (National Alliance for Research on Schizophrenia and Depression) Young Investigator Awards (to J.D. and A.R.S.), the Genetic Association Information Network (GAIN), the Walter E. Nichols, M.D., and Eleanor Nichols endowments, at Stanford University, and by The Paul Michael Donovan Charitable Foundation. Genotyping was carried out by the Genotyping and Analysis at the Broad Institute of Harvard and
MIT (S. Gabriel and D.B.M.), which is supported by grant U54 RR020278 from the National Center for Research Resources. Genotyping of half of the control sample presented here was carried out with support from GAIN. The GAIN quality control team (G.R. Abecasis and J. Paschall) made important contributions to the project. The statistical analysis team was coordinated by Douglas F. Levinson (Stanford University) and included Jianxin Shi (National Cancer Institute), Frank Dudbridge (London School of Hygiene and Tropical Medicine), Peter Holmans (Cardiff University) and Itsik Pe'er (Columbia University).

MICROS: In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano, and the South Tyrolean Sparkasse Foundation. For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent, and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project.

MIGen: National Heart, Lung, and Blood Institute's STAMPEED genomics research program (R01 HL087676) and the National Center for Research Resources (U54 RR020278)

MORGAM: The MORGAM study was part funded through the European Community's Sixth Framework Programme Cardiogenics project, grant agreement LSHM-CT-2006-037593 and Seventh Framework Programme ENGAGE project, grant agreement HEALTH-F4-2007-201413. We would like to acknowledge the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute for genotyping the data. The PRIME Study was supported by grants from Inserm, Merck Sharp and Dohme-Chibret Laboratory, the French Research Agency and the Foundation Heart and Arteries. We thank the following organisations that allowed the recruitment of participants for the PRIME: the health screening centres organised by the Social Security of Lille (Institut Pasteur), Strasbourg, Toulouse, and Tourcoing; the occupational medicine services of Haute-Garonne and of the Urban Community of Strasbourg; the Association Inter-entreprises des Services Médicaux du Travail de Lille et environs; the Comité pour le Développement de la Médecine du Travail; the Mutuelle Générale des Postes, Télégraphes et Téléphones du Bas-Rhin; the Laboratoire d'Analyses de l'Institut de Chimie Biologique de la Faculté de Médecine de Strasbourg; We also gratefully acknowledge the teams of the Lille, Strasbourg and Toulouse centres for their dedicate work and relentless energy in following up their cohorts; the contribution of the members of the event validation committees: L Guize; C Morrison; M-T Guillanneuf; and M Giroud and the Alliance Partnership Programme for its financial support. Sites and key personnel of contributing MORGAM Centres include: Finland: FINRISK: FINRISK, National Institute for Health and Welfare, Helsinki: V. Salomaa (principal investigator), A. Juolevi, E. Vartiainen, P. Jousilahti; ATBC, National Institute for Health and Welfare, Helsinki: J. Virtamo (principal investigator), H. Kilpeläinen; MORGAM Data Centre, National Institute for Health and Welfare, Helsinki: K. Kuulasmaa (responsible person), Z. Cepaitis, A. Haukijärvi, B. Joseph, J. Karvanen, S. Kulathinal, M. Niemelä, O. Saarela; MORGAM Central Laboratory, National Institute for Health and Welfare, Helsinki: M. Perola (responsible person), P. Laiho, M. Sauramo. The ATBC Study was supported by US Public Health Service contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004 from the National Cancer Institute. France: National Coordinating Centre, National Institute of Health and Medical Research (U258), Paris: P. Ducimetière (national coordinator), A. Bingham; PRIME/Strasbourg, Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Faculty of Medicine, Strasbourg: D. Arveiler (principal investigator), B. Haas, A. Wagner; PRIME/Toulouse, UMR INSERM 1027; and Department of Epidemiology, Toulouse University School of Medicine, Universite Paul Sabatier, Toulouse: J. Ferrières (principal investigator), J-B. Ruidavets, V. Bongard, D. Deckers, C. Saulet, S. Barrere; PRIME/Lille,
Department of Epidemiology and Public Health, INSERM U744-Université Lille Nord de France – Institut Pasteur de Lille: P. Amouyel (principal investigator), M. Montaye, B. Lemaire, S. Beauchant, D. Cottel, C. Graux, N. Marecaux, C. Steclebout, S. Szeremeta; MORGAM Laboratory, INSERM U937, Paris: F. Cambien (responsible person), L. Tiret, V. Nicaud. INSERM and InVS are acknowledged for their support. Italy: Centro Ricerche EPIMED - Epidemiologia e Medicina Preventiva, Dipartimento di Medicina Sperimentale. Università degli Studi dell'Insubria, Varese: M. Ferrario (principal investigator), G. Veronesi. Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy: Giancarlo Cesana. This study was supported by the Health Administration of Regione Lombardia [grant numbers 9783/1986, 41795/1993, 31737/1997 and 17155/2004], for the baseline examinations and the follow-up. Doctor Stefano Signorini (M.D.), Laboratory Medicine, Hospital of Desio is thanked for their support. United Kingdom: PRIME/Belfast, Queen's University Belfast, Belfast, Northern Ireland: F. Kee (principal investigator) A. Evans (former principal investigator), J. Yarnell, E. Gardiner; MORGAM Coordinating Centre, Queen’s University Belfast, Belfast, Northern Ireland: A. Evans (MORGAM coordinator), S. Cashman, F. Kee. UKCRC are acknowledged for their support. MORGAM Management Group: A. Evans (chair, Belfast, UK), S. Blankenberg (Hamburg, Germany), F. Cambien (Paris, France), M. Ferrario (Varese, Italy), K. Kuulasmaa (Helsinki, Finland), A. Palotie (Cambridge, UK), M. Perola (Helsinki, Finland), A. Peters (Neuherberg, Germany), V. Salomaa (Helsinki, Finland), H. Tunstall-Pedoe (Dundee, Scotland), P.G. Wiklund (Umeå, Sweden); Previous members: K. Asplund (Stockholm, Sweden), L. Peltonen (Helsinki, Finland), D. Shields (Dublin, Ireland), B. Stegmayr (Umeå, Sweden).

MuTHER consortium: The MuTHER Study was funded by a program grant from the Wellcome Trust (081917/Z/07/Z) and core funding for the Wellcome Trust Centre for Human Genetics (090532). Genotyping of TwinsUK samples was provided by the Wellcome Trust Sanger Institute and the National Eye Institute via an NIH/CIDR genotyping project. Additional funding came from European Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement, ENGAGE project grant agreement HEALTH-F4-2007-201413, the Swiss National Science Foundation, the Louis-Jeantet Foundation and a National Institutes of Health-NIMH grant (GTEx project, R01 MH090941). TwinsUK also receives support from the Dept of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London and a Biotechnology and Biological Sciences Research Council (BBSRC) project grant (G20234). TDS is an NIHR senior Investigator and ERC Senior Investigator.

NELSON: The NELSON study is supported, in part, by Zorg Onderzoek Nederland-Medische Wetenschappen, KWF Kankerbestrijding, Stichting Centraal Fonds Reserves van Voormalig Vrijwillige Ziekenfondsverzekeringen, G. Ph. Verhagen Foundation, Rotterdam Oncologic Thoracic Study Group, Erasmus Trust Fund, Foundation against Cancer, Flemish League against Cancer, ITEA2 (project Care4Me), and Lokaal Gezondheids Overleg (LOGO) Leuven and Hageland. Genotyping was supported through a European Union FP7 program (grant number: 201379) to COPACETIC (COPD Pathology: Addressing Critical gaps, Early Treatment & Diagnosis and Innovative Concepts)

NFBC66: NFBC1966 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, and the Medical Research Council, UK (G0500539, G0600705, G1002319,
The DNA extractions, sample quality controls, biobank upkeep and aliquoting was performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. We thank the late Professor Paula Rantakallio (launch of NFBC1966), and Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science Leena Peltonen.

NHS and HPFS: These studies were funded by NIH U01CA-098233, R01HL71981, DK091718, DK046200

NSHD: The MRC National Survey of Health and Development (NSHD) was funded by the Medical Research Council (MC_UU_12019/1). We are very grateful to the members of this birth cohort for their continuing interest and participation in the study. We would also like to acknowledge the Swallow Group, UCL, who performed the DNA extractions (Rousseau et al., 2006).

NSPHS: The Northern Swedish Population Health Study (NSPHS) was funded by the Swedish Medical Research Council (Project Number K2007-66X-20270-01-3), and the Foundation for Strategic Research (SSF). NSPHS, as part of EUROSPAN (European Special Populations Research Network), was also supported by European Commission FP6 STRP grant number 01947 (LSHG-CT-2006-01947). This work has also been supported by the Swedish Research Council (Grant 621-2011-4423), the Science for Life Laboratory – Uppsala and the Swedish Society for Medical Research (SSMF).

NTRNESDA: Netherlands Twin Registry (NTR): Funding was obtained from the Netherlands Organization for Scientific Research (NWO: MagW/ZonMW grants 904-61-090, 985-10-002, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, Middelgroot-911-09-032, Spinozaporemie 56-464-14192), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007), the VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA), the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community's Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Science Council (ERC Advanced, 230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA), and the National Institutes of Health (NIH, R01D0042157-01A, Grand Opportunity grants 1RC2MH089951-01 and 1RC2 MH089995-01). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Netherlands Study of Depression and Anxiety (NESDA): Funding was obtained through the Geestkracht program of the Netherlands Organization for Health Research and Development (Zon-MW, grant number 10-000-1002), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI–NL), the VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA), the European Community’s Seventh Framework Program ENGAGE (HEALTH-F4-2007-201413), and the National Institutes of Health (Grand Opportunity grants 1RC2MH089951-01 and 1RC2 MH089995-01). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.

ORCADES: ORCADES was supported by the Chief Scientist Office of the Scottish Government, the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947).
extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

PIVUS: Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures. E.I. is supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science.

PLCO / PLCO2: This study within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial was funded by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH. The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, NCI, the screening center investigators and staff of the PLCO Cancer Screening Trial, Mr. Thomas Riley and staff at Information Management Services, Inc., and Ms. Barbara O’Brien and staff at Westat, Inc. for their contributions to the PLCO. Finally, we are grateful to the study participants for donating their time and making this study possible.

PREVEND: PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the National Institutes of Health (grant LM010098), The Netherlands Organization for Scientific Research (NWO-Groot 175.010.2007.006, NWO VENI grant 916.761.70 and 916.10.117, ZonMW 90.700.441), and the Dutch Inter University Cardiology Institute Netherlands. N. Verweij is supported by the Netherlands Heart Foundation (grant NHS2010B280).

PROCARDIS: PROCARDIS was supported by the European Community Sixth Framework Program (LSHM-CT-2007-037273), AstraZeneca, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Heart-Lung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the Foundation for Strategic Research and the Stockholm County Council (560283).

PROSPER/PHASE: The PROSPER study was supported by an investigator initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J.W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework program of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810).

QFS: The Quebec Family Study (QFS) was funded by multiple grants from the Medical Research Council of Canada and the Canadian Institutes for Health Research. This work was supported by a team grant from the Canadian Institutes for Health Research (FRCN-CCT-83028)

QIMR Polygene: We are grateful to the twins and their families for their generous participation in these studies. We would like to thank staff at the Queensland Institute of Medical Research: Dixie Statham, Ann Eldridge and Marlene Grace for sample collection, Grant Montgomery, Anjali Henders, Lisa Bowdler, Steven Crooks and staff of the Molecular Epidemiology Laboratory for sample processing and preparation, Scott Gordon for data QC and preparation, and David Smyth and Harry Beeby for IT support. We acknowledge funding from the Australian National Health and Medical Research Council (NHMRC grants 241944, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 496688, 552485 and 613672), the U.S. National Institute of Health (grants AA07535, AA10248, AA014041, AA13320, AA13321, AA13326 and DA12854) and the Australian Research Council (ARC grant DP0770096).
ReproGen: Joanne M Murabito's funding for aging research is supported by R01AG029451. John R.B. Perry is supported by the Wellcome Trust as a Sir Henry Wellcome Fellow (092447/Z/10/Z).

RSI / RSII / RSIII: The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maksim V. Struchalin for their support in creation and analysis of imputed data. We would like to thank Karol Estrada, Dr. Fernando Rivadeneira, Dr. Tobias A. Knoch, Anis Abusieiris, Luc V. de Zeeuw, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands), for their help in creating GRIMP, and BigGRID, MediGRID, and Services@MediGRID/D-Grid, (funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015 G) for access to their grid computing resources. O.H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.); Metagenics Inc.; and AXA. Nestlé Nutrition (Nestec Ltd.); Metagenics Inc.; and AXA had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation or approval of the manuscript.

RUNMC: The RUNMC study was supported by an investment grant of the Radboud University Medical Centre, Nijmegen, The Netherlands.

SardiNIA: We thank all the volunteers who generously participated in this study, Monsignore Piseddu, Bishop of Ogliastra and the mayors and citizens of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini). This work was supported by the Intramural Research Program of the National Institute on Aging (NIA), National Institutes of Health (NIH). The SardiNIA (“Progenia”) team was supported by Contract NO1-AG-1–2109 from the NIA; the efforts of GRA were supported in part by contract 263-MA-410953 from the NIA to the University of Michigan and by research grant HG002651 and HL084729 from the NIH (to GRA).

SASBAC: The SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the United States National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. E.I. was supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Society of Medicine, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science while working with this article.

SCARFSHEEP: The Swedish Heart-Lung Foundation, the Swedish Research Council, the Strategic Cardiovascular Programme of Karolinska Institutet and the Stockholm County Council, the Strategic support for epidemiological research at Karolinska Institutet and the Stockholm County Council

SEARCH: SEARCH is funded by Cancer Research UK (C490/A10119, C490/A10124, C490/A8339).
SHIP/SHIP-TREND: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the ‘Center of Knowledge Interchange’ program of the Siemens AG and the Caché Campus program of the InterSystems GmbH.

Sorbs: This work was supported by grants from the German Research Council (SFB- 1052 “Obesity mechanisms”), from the German Diabetes Association and from the DHFD (Diabetes Hilfs- und Forschungsfonds Deutschland). IFB AdiposityDiseases is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001. We would like to thank Knut Krohn (Microarray Core Facility of the Interdisciplinary Centre for Clinical Research, University of Leipzig) for the genotyping/analytical support and Joachim Thiery (Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig) for clinical chemistry services. We thank Nigel W. Rayner (WTCHG, University of Oxford, UK) for the excellent bioinformatics support. Reedik Mägi is funded by European Commission under the Marie Curie Intra-European Fellowship and by Estonian Government (grant #SF0180142s08).

SPT: Our chief acknowledgement is to the participants in these studies for their willingness to contribute. We also thank Nurses Orgen Brown and Diedre Thomas for assistance with recruitment as well as past and present Laboratory technologists and drivers at TMRU for their invaluable technical assistance. This work was supported by NIH Grants R01HL53353 and R01DK075787.

STR: This work was supported by grants from the US National Institutes of Health (AG028555, AG08724, AG04563, AG10175, AG08861), the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, the Royal Swedish Academy of Science, and ENGAGE (within the European Union Seventh Framework Programme, HEALTH-F4-2007-201413). Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures.

TANDEM: We thank the Ministry of Health of the Republic of Seychelles for continued support of this epidemiologic research and Air Seychelles and SkyChef for their logistic support in transporting equipment and samples. The study benefited from grants from the Swiss National Science Foundation (TANDEM No 31-51115.97, PROSPER 3200BO-111362/1, and 3233BO-111361/1); Murielle Bochud was supported by the Swiss School of Public Health Plus. The division of Nephrology and the Institute of Social and Preventive Medicine of Lausanne University Hospital (Lausanne, Switzerland) provided additional logistic support. Georg Ehret is funded by the University of Geneva, the Swiss National Foundation, and the Fondation pour Recherches Médicales, Geneva, Switzerland.

THISEAS: Recruitment for THISEAS was partially funded by a research grant (PENED 2003) from the Greek General Secretary of Research and Technology; we thank all the dieticians and clinicians for their contribution to the project.
TRAILS: This research is part of the TRacking Adolescents’ Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center Rotterdam, the University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Bavo group, all in the Netherlands. TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence grants 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 452-04-314 and GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005; NWO Longitudinal Survey and Panel Funding 481-08-013), the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS project FP-006), Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL (CP 32), and the participating universities. We are grateful to all adolescents, their parents and teachers who participated in this research and to everyone who worked on this project and made it possible. Statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003) along with a supplement from the Dutch Brain Foundation.

Tromsø: University of Tromsø, Norwegian Research Council (project number 185764)

TWINGENE: This work was supported by grants from the Ministry for Higher Education, the Swedish Research Council (M-2005-1112 and 2009-2298), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH grant DK U01-066134, The Swedish Foundation for Strategic Research (SSF; ICA08-0047).

TwinsUK: The study was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility based at Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London. T.D.S. is holder of an ERC Advanced Principal Investigator award. Genotyping was performed by The Wellcome Trust Sanger Institute and the National Eye Institute via an NIH/CIDR.

ULSAM: Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures. E.I. is supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science.

Women’s Genome Health Study (WGHS): The WGHS is supported by HL043851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute with collaborative scientific support and funding for genotyping provided by Amgen.

WHI Metabochip: The Population Architecture Using Genomics and Epidemiology (PAGE) program is funded by the National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790 (WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The complete list of PAGE members can be found at http://www.pagestudy.org. The data and materials included in this report result from a
collaboration between the following studies: The Multiethnic Cohort study (MEC) characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute (R37CA54281, R01 CA63, P01CA33619, U01CA136792, and U01CA98758); Funding support for the “Epidemiology of putative genetic variants: The Women’s Health Initiative” study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/ WHI_investigators_shortlist.pdf; Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01HG004803 and its NHGRI ARRA supplement). The following studies contributed to this manuscript and are funded by the following agencies: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022. Assistance with phenotype harmonization, SNP selection and annotation, data cleaning, data management, integration and dissemination, and general study coordination was provided by the PAGE Coordinating Center (U01HG004801-01 and its NHGRI ARRA supplement). The National Institutes of Mental Health also contributes to the support for the Coordinating Center. The PAGE consortium thanks the staff and participants of all PAGE studies for their important contributions. Whitehall: The Whitehall-II study was supported by the Medical Research Council, the BHF, and the National Institutes of Health (R01HL36310). Whitehall-II genotyping was, in part, supported by a Medical Research Council-GlaxoSmithKline pilot program grant (ID 85374) and the BHF (PG/07/133/24260, RG/08/008, SP/07/007/23671) and a senior fellowship to i (FS/2005/125). Dr Kumari's and Prof. Kivimaki's time on this manuscript was partially supported by the National Heart Lung and Blood Institute (NHAB: HL36310). WTCCC-CAD: Recruitment of the WTCCC-CAD cases was funded by the British Heart Foundation (BHF) and genotyping by the Wellcome Trust as part of the WTCCC Study. NJS holds a Chair funded by the BHF and is supported by the NIHR Leicester Cardiovascular Biomedical Research Unit. WTCCC-T2D: Funding for Mark McCarthy was provided by Wellcome Trust 090532, 085301, 081917, 083270, 098381, 090367, a European Commission grant HEALTH-F4-2007-201413, and MRC grant G0601261. Mark McCarthy is an NIHR Senior Investigator and a Wellcome Trust Senior Investigator. Funding for Andrew Morris was provided by Wellcome Trust grants 081682, 098017, 090532. Reedik Mägi is funded by the European Commission under the Marie Curie Intra-European Fellowship and by Estonian Government grant #SF0180142s08. Cecilia M. Lindgren is a Wellcome Trust Research Career Development Fellow (08596/Z/08/Z). YFS (Young Finns Study): The Young Finns Study has been financially supported by the Academy of Finland: grants 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi), the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (grant 9M048 for 9N035 for TeLeht), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation and Emil Aaltonen Foundation.
Contributing Consortia
The ADIPOGen Consortium

1. Department of Epidemiology, Biostatistics and Occupational Health. Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.
2. Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
3. General Medicine Division, Massachusetts General Hospital, Boston, MA, USA.
4. MRC CAiTE Centre & School of Social and Community and Medicine, University of Bristol, Bristol, UK, Oakfield House,Oakfield Grove, Bristol, BS8 2BN.
5. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
6. Genetics of Complex Traits, Peninsular Medical School, University of Exeter, UK.
7. Genetics, GlaxoSmithKline, King of Prussia, PA, USA.
8. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
10. Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany.
11. Departments of Medicine and Public Health, Weill Cornell Medical College, New York, NY, USA.
12. Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere 33521, Finland.
13. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
14. Clinical Research Branch, National Institute on Aging, Baltimore, MD 21250, USA.
15. Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
16. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
17. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
18. Centre for Medical Systems Biology, University of Oxford, Oxford OX3 7BN, UK.
19. Molecular Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.
20. Division of Genetic Epidemiology, Innsbruck Medical University, 6020 Innsbruck, Austria.
21. Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
22. Harvard School of Public Health, Boston, MA 02115, USA.
23. Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA.
24. Department of Medical Statistics and Bioinformatics, Leiden, 2333 ZC, The Netherlands.
25. Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
26. Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
27. Department of Preventive Medicine, Chicago, IL, USA.
28. Lady Davis Institute for Medical Research, Department of Oncology, McGill University, Montreal, Quebec H3T 1E2, Canada.
29. Department of Human genetics, McGill University, Montreal, Quebec H3T 1E2, Canada.
30. Department of Medicine, Harvard Medical School, Boston, MA, USA.
31. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
32. Cardiology, Ealing Hospital National Health Service (NHS) Trust, London, UK.
33. Department of Internal Medicine, 1011 Lausanne, Switzerland.
34. Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland.
35. Epidemiology and Biostatistics, Imperial College London, London, UK.
36. Department of Clinical Genetics and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
37. Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA.
38. Group Health Research Institute, Group Health Cooperative, Seattle, WA.
39. Departments of Pathology and Biochemistry, University of Vermont, Burlington, VT, USA.
40. Cardiovascular Health Research Unit, Seattle, WA, USA.
41. Medical Genetics Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
42. Department of Medicine, University of Turku and Turku University Hospital, Turku 20521, Finland.
43. Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere 33521, Finland.
44. Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy- Affiliated Institute of the University of Lübeck, Lübeck, Germany.
45. Department of Neurology, General Central Hospital, Bolzano, Italy.
46. Department of Neurology, University of Lübeck, Lübeck, Germany.
47. School of Social and community medicine, University of Bristol, UK, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
48. British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.Wolfson Medical School Building, University Avenue, Glasgow, G12 8QQ, UK.
49. Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy.
50. Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, MD, USA.
51. Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
52. Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2330 RC, The Netherlands.
53. St. Johann's Private Medical University Salzburg, 5020 Salzburg, Austria.
54. Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
55. Institute for Molecular Medicine FinLab, University of Helsinki, Finland.
56. Population Studies Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland.
57. Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH.
58. Division of General Internal Medicine, Women's Health Clinical Research Center, University of California, San Francisco, California, USA.
59. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
60. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
61. Klinikum Großhadern, Munich, Germany.
62. Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
63. School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
64. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
65. Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2330 RC, The Netherlands.
66. Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
68. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
69. Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39213, USA.
70. Medical Genetics Institute, Los Angeles, CA, USA.
71. University Institute of Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.
72. Swiss Institute of Bioinformatics, Lausanne, Switzerland.
73. Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
74. Department of Family and Preventive Medicine, La Jolla, CA, USA.
75. Brigham and Women's Hospital, Boston, MA 02115, USA.
76. Jackson Heart Study Coordinating Center, Jackson State University, Jackson, MS 39213, USA.
77. Section of Molecular Epidemiology, Leiden University Medical Center & The Netherlands Genomics Initiative-Sponsored by the Netherlands Consortium for Healthy Aging, Leiden, 2333 ZC, The Netherlands.
78. Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, TX, USA.
79. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and the Department of Clinical Physiology, Turku University Hospital, Turku 20521, Finland.
80. Chronic Disease Epidemiology and Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
81. Diabetes Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
82. National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA.
83. Programs in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
84. Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
85. Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
86. Department of Medicine, Human Genetics, Epidemiology and Biostatistics. Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Quebec H3T 1E2, Canada.
The AGEN BMI Working Group (Alphabetical by last name)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devin Absher</td>
<td>dabsher@hudsonalpha.com</td>
<td>1) HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States</td>
</tr>
<tr>
<td>Linda S. Adair</td>
<td>linda_adair@unc.edu</td>
<td>1) Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, United States</td>
</tr>
<tr>
<td>Koichi Akiyama</td>
<td>kakiyama@ri.nclm.go.jp</td>
<td>1) Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan</td>
</tr>
<tr>
<td>Matthew Allison</td>
<td>mallison@ucsd.edu</td>
<td>1) Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California, United States</td>
</tr>
<tr>
<td>Themistocles L. Assimes</td>
<td>tassimes@stanford.edu</td>
<td>1) Department of Medicine, Stanford University school of Medicine, Stanford, California, United States</td>
</tr>
<tr>
<td>Tin Aung</td>
<td>aung_tin@yahoo.co.uk</td>
<td>1) Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore</td>
</tr>
<tr>
<td>Qiuyin Cai</td>
<td>qiuyin.cai@vanderbilt.edu</td>
<td>1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology Center; and Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, Tennessee, United States</td>
</tr>
<tr>
<td>Ching-Chu Chen</td>
<td>chingchu@ms15.hinet.net</td>
<td>1) Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) School of Chinese Medicine, China Medical University, Taichung, Taiwan</td>
</tr>
<tr>
<td>Chien-Hsiun Chen</td>
<td>chchen@ibms.sinica.edu.tw</td>
<td>1) Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) School of Chinese Medicine, China Medical University, Taichung, Taiwan</td>
</tr>
<tr>
<td>Yii-Der I. Chen</td>
<td>lda.Chen@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Yoon-Shin Cho</td>
<td>yooncho33@hallym.ac.kr;</td>
<td>1) Center for Genome Science, National Institute of Health, Oson Health Technology Administration Complex, Chuncheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td></td>
<td>yooncho33@korea.kr</td>
<td>2) Department of Biomedical Science, Hallym Univesity, Gangwon-do, Republic of Korea</td>
</tr>
<tr>
<td>Myeong-Chan Cho</td>
<td>mcho@korea.kr</td>
<td>1) National Institute of Health, Oson Health Technology Administration complex, Chuncheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Bo-Youl Choi</td>
<td>bychoi@hanyang.ac.kr</td>
<td>1) Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea</td>
</tr>
<tr>
<td>Byung-Yeol Chun</td>
<td>mhyeh@knu.ac.kr</td>
<td>1) Department of Preventive Medicine, School of Medicine, and Health Promotion Research Center, Kyungpook National University, Daegu, Republic of Korea</td>
</tr>
<tr>
<td>Ryan J. Delahanty</td>
<td>ryan.delahanty@vanderbilt.edu</td>
<td>1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology Center; and Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, Tennessee, United States</td>
</tr>
<tr>
<td>Rajkumar Dorajoo</td>
<td>dorajoor@gis.a-star.edu.sg</td>
<td>1) Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Department of Genomics of Common Disease, School of Public Health,</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wei Gan</td>
<td>ganwei@sibs.ac.cn</td>
<td>1) Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China</td>
</tr>
<tr>
<td>Yong Gao</td>
<td>gxmugy@163.com</td>
<td>1) Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China 2) College of General Practice, Guangxi Medical University, Nanning, Guangxi, China</td>
</tr>
<tr>
<td>Yu-Tang Gao</td>
<td>ytgao@vip.sina.com</td>
<td>1) Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China</td>
</tr>
<tr>
<td>Min-Jin Go</td>
<td>minjin.go@gmail.com</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Dongfeng Gu</td>
<td>gudf@yahoo.com</td>
<td>1) Department of Evidence Based Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and National Center for Cardiovascular Diseases, Beijing, China</td>
</tr>
<tr>
<td>Lixuan Gui</td>
<td>guilixuan@gmail.com</td>
<td>1) Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China</td>
</tr>
<tr>
<td>Xiuxing Guo</td>
<td>Xiuqing.Guo@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinaiai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Bok-Ghee Han</td>
<td>bokghee@nih.go.kr; bokghee@yahoo.com (older)</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Jiang He</td>
<td>jhe@tulane.edu</td>
<td>1) Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA</td>
</tr>
<tr>
<td>Meian He</td>
<td>hemeian@hotmail.com</td>
<td>1) Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China</td>
</tr>
<tr>
<td>James Hixson</td>
<td>James.E.Hixson@uth.tmc.edu</td>
<td>1) Human Genetics Center, University of Texas School of Public Health, Houston, TX</td>
</tr>
<tr>
<td>Chao Agnes Hsiung</td>
<td>hsiung@nhri.org.tw</td>
<td>1) Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan</td>
</tr>
<tr>
<td>Frank Hu</td>
<td>nhbhf@channing.harvard.edu</td>
<td>1) Departments of Epidemiology and Nutrition, Harvard University School of Public Health, Boston, Massachusetts, United States</td>
</tr>
<tr>
<td>Joo-Youeun Hwang</td>
<td>ondo23@hanmail.net</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Chii-Min Hwu</td>
<td>chhwu@vghtpe.gov.tw</td>
<td>1) Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan 2) School of Medicine, National Yang-Ming University, Taipei, Taiwan</td>
</tr>
<tr>
<td>Minoru Isomura</td>
<td>isomura@med.shimane-u.ac.jp</td>
<td>1) Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Affiliations</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Masato Isono</td>
<td>isono@imcj-gdt.jp</td>
<td>1) Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan</td>
</tr>
<tr>
<td>Bu-Tian Ji</td>
<td>bu-tian.ji@nih.hhs.gov; jib@mail.nih.gov</td>
<td>1) Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6116 Executive Boulevard, Rockville, MD 20852, United States</td>
</tr>
<tr>
<td>Jyh-Ming Jimmy Juang</td>
<td>p91421019@ntu.edu.tw</td>
<td>1) Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan</td>
</tr>
<tr>
<td>Dae-Hee Kang</td>
<td>dhkang@snu.ac.kr</td>
<td>1) Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea</td>
</tr>
<tr>
<td>Norihiro Kato</td>
<td>nokato@ri.ncgm.go.jp</td>
<td>1) Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan</td>
</tr>
<tr>
<td>Young-Jin Kim</td>
<td>in_time@korea.kr</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Bong-Jo Kim</td>
<td>kbj6181@cdc.o.kr</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Mi-Kyung Kim</td>
<td>kmkkim@hanyang.ac.kr</td>
<td>1) Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea</td>
</tr>
<tr>
<td>Eric Kim</td>
<td>Eric.kim@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Michiaki Kubo</td>
<td>mkubo@src.riken.jp</td>
<td>1) Laboratory for Genotyping Development, RIKEN Center for Genomic Medicine, Yokohama, Japan</td>
</tr>
<tr>
<td>Jane Z. Kuo</td>
<td>Jane.kuo@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Soonil Kwon</td>
<td>Soonil.Kwon@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Nanette R. Lee</td>
<td>nanette_rlee@yahoo.com</td>
<td>1) USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu, Philippines</td>
</tr>
<tr>
<td>I-Te Lee</td>
<td>itlee@vghtc.gov.tw</td>
<td>1) Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan</td>
</tr>
<tr>
<td>Wen-Jane Lee</td>
<td>wjlee@vghtc.gov.tw</td>
<td>1) Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan</td>
</tr>
<tr>
<td>Juyoung Lee</td>
<td>jylee@cdc.go.kr</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Jeannette Lee</td>
<td>jeannette_lee@nuhs.edu.sg</td>
<td>1) Saw Swee Hock School of Public Health, National University of Singapore, and National University Health System, Singapore, Singapore</td>
</tr>
<tr>
<td>Young-Hoon Lee</td>
<td>lyh8275@hanmail.net</td>
<td>1) Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Republic of Korea</td>
</tr>
<tr>
<td>Jong-Young Lee</td>
<td>lleejy63@gmail.com</td>
<td>1) Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea</td>
</tr>
<tr>
<td>Huaixing Li</td>
<td>lihx@sibs.ac.cn</td>
<td>1) Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Research, Chinese Academy of Sciences, Beijing, China</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Affiliations</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Shengxu Li</td>
<td>sli10@tulane.edu</td>
<td>1) Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA</td>
</tr>
<tr>
<td>Jun Liang</td>
<td>mwlj521@163.com</td>
<td>1) Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College; Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, 221009, China</td>
</tr>
<tr>
<td>Wei-Yen Lim</td>
<td>ephlwy@nus.edu.sg</td>
<td>1) Saw Swee Hock School of Public Health, National University of Singapore, and National University Health System, Singapore, Singapore</td>
</tr>
<tr>
<td>Xu Lin</td>
<td>xlin@sibs.ac.cn</td>
<td>1) Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China</td>
</tr>
<tr>
<td>Jian-Jun Liu</td>
<td>liuj3@gis.a-star.edu.sg</td>
<td>1) Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore</td>
</tr>
<tr>
<td>Jirong Long</td>
<td>jirong.long@vanderbilt.edu</td>
<td>1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology Center; and Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, Tennessee, United States</td>
</tr>
<tr>
<td>Ling Lu</td>
<td>llu01@sibs.ac.cn</td>
<td>1) Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China</td>
</tr>
<tr>
<td>Wei Lu</td>
<td>weiloo@scdc.sh.cn; weiloo@msn.com</td>
<td>1) Shanghai Municipal Center for Disease Control & Prevention, 1380 Zhong Shan Road (W), Shanghai, China</td>
</tr>
<tr>
<td>Tetsuro Miki</td>
<td>tmiki@m.ehime-u.ac.jp</td>
<td>1) Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Japan</td>
</tr>
<tr>
<td>Zengnan Mo</td>
<td>zengnanmo@hotmail.com</td>
<td>1) Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China 2) Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China</td>
</tr>
<tr>
<td>Karen L. Mohlke</td>
<td>mohlke@med.unc.edu</td>
<td>1) Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States</td>
</tr>
<tr>
<td>Toru Nabika</td>
<td>nabika@med.shimane-u.ac.jp</td>
<td>1) Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan</td>
</tr>
<tr>
<td>Daniel PK (Peng-Keat) Ng</td>
<td>ephnpkd@nus.edu.sg</td>
<td>1) Saw Swee Hock School of Public Health, National University of Singapore, and National University Health System, Singapore, Singapore</td>
</tr>
<tr>
<td>Takayoshi Ohkubo</td>
<td>tohkubo@belle.shiga-med.ac.jp</td>
<td>1) Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan 2) Department of Health Science, Shiga University of Medical Science, Otsu, Japan</td>
</tr>
<tr>
<td>Yukinori Okada</td>
<td>yokada@src.riken.jp</td>
<td>1) Laboratory for Statistical Analysis, RIKEN Center for Genomic Medicine, Tokyo, Japan 2) Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts,</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Rick T.H. Ong | ongtwl@gis.a-star.edu.sg | 1) NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore
| | | 2) Genome Institute of Singapore, Agency for Science and Technology Research, Singapore, Singapore
| | | 3) Centre for Molecular Epidemiology, National University of Singapore, Singapore |
| Lu Qi | nhlqi@channing.harvard.edu | 1) Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, 02115, United States
| | | 2) Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, United States |
| Treva K. Rice | treva@wubios.wustl.edu | 1) Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States |
| Jerome I. Rotter | Jerome.Rotter@cshs.org | 1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States |
| Mark Seielstad | Mark.Seielstad@ucsf.edu | 1) Institute of Human Genetics, University of California, San Francisco, United States |
| Wayne Huey-Herng Sheu | whhsheu@vghtc.gov.tw | 1) Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; College of Medicine, National Defense Medical Center, Taipei, Taiwan
| | | 2) School of Medicine, National Yang-Ming University, Taipei, Taiwan |
| Jiajun Shi | jiajun.shi@vanderbilt.edu | 1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology Center; and Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, Tennessee, United States |
| Min-Ho Shin | mhshinx@paran.com | 1) Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea |
| Dong-Hoon Shin | dhshin@dsmc.or.kr | 1) Department of Occupational and Environmental Medicine, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea |
| Xiao-Ou Shu | xiao-ou.shu@vanderbilt.edu | 1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology Center; and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States |
| Xue-Ling Sim | xlsim@umich.edu | 1) Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore |
| Huaidong Song | huaidong_s1966@163.com | 1) Ruijin Hospital, State Key Laboratory of Medical Genomics, Molecular Medical Center, Shanghai Institute of Endocrinology, Shanghai Jiao Tong University School of Medicine, Shanghai, China |
| Yasuharu Tabara | tabara@genome.med.kyoto-u.ac.jp | 1) Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan |
| E. Shyong Tai | e_shyong_tai@nuhs.edu.sg | 1) Saw Swee Hock School of Public Health, National University of Singapore, and National University Health System, Singapore, Singapore
<p>| | | 2) Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naoyuki Takashima</td>
<td>takasima@belle.shiga-med.ac.jp</td>
<td>1) Department of Health Science, Shiga University of Medical Science, Otsu, Japan</td>
</tr>
<tr>
<td>Ryoichi Takayanagi</td>
<td>takayana@intmed3.med.kyushu-u.ac.jp</td>
<td>1) Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan</td>
</tr>
<tr>
<td>Fumihiko Takeuchi</td>
<td>fumihiko@takeuchi.name</td>
<td>1) Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan</td>
</tr>
<tr>
<td>Aihua Tan</td>
<td>tanaihua12@126.com</td>
<td>1) Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China</td>
</tr>
<tr>
<td>Toshihiro Tanaka</td>
<td>toshitan@src.riken.jp</td>
<td>1) Laboratory for Cardiovascular Diseases, RIKEN Center for Genomic Medicine, Yokohama, Japan</td>
</tr>
<tr>
<td>Kent D. Taylor</td>
<td>Kent.taylor@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States</td>
</tr>
<tr>
<td>Fuu-Jen Tsai</td>
<td>d0704@mail.cmuh.org.tw</td>
<td>1) School of Chinese Medicine, China Medical University, Taichung, Taiwan 2) Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan 3) Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan</td>
</tr>
<tr>
<td>Tatsuhiko Tsunoda</td>
<td>tsunoda@src.riken.jp</td>
<td>1) Laboratory for Medical Informatics, RIKEN Center for Genomic Medicine, Yokohama, Japan</td>
</tr>
<tr>
<td>Satoshi Umemura</td>
<td>umemuras@med.yokohama-cu.ac.jp</td>
<td>1) Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan</td>
</tr>
<tr>
<td>Tzung-Dao Wang</td>
<td>tdwang@ntu.edu.tw</td>
<td>1) Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan</td>
</tr>
<tr>
<td>Wangqin Wen</td>
<td>wanqing.wen@vanderbilt.edu</td>
<td>1) Vanderbilt Epidemiology Center and Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States</td>
</tr>
<tr>
<td>Tien-Yin Wong</td>
<td>tien_yin_wong@nuhs.edu.sg</td>
<td>1) Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore 2) Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore</td>
</tr>
<tr>
<td>Ying Wu</td>
<td>ying_wu@med.unc.edu</td>
<td>1) Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States</td>
</tr>
<tr>
<td>Chen Wu</td>
<td>cindywuchen@gmail.com</td>
<td>1) State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China</td>
</tr>
<tr>
<td>I-Chien Wu</td>
<td>icwu@nhri.org.tw</td>
<td>1) Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan</td>
</tr>
<tr>
<td>Tangchun Wu</td>
<td>wut@mails.tjmu.edu.cn</td>
<td>1) Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China</td>
</tr>
<tr>
<td>Jer-Yuarn Wu</td>
<td>jywu@ibms.sinica.edu.tw</td>
<td>1) Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Affiliations</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Yong-Bing Xiang</td>
<td>xyb_sci@yahoo.com.cn</td>
<td>1) Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>School of Medicine, Shanghai, China</td>
</tr>
<tr>
<td>Ken Yamamoto</td>
<td>kyama@bioreg.kyushu-u.ac.jp</td>
<td>1) Department of Molecular Genetics, Medical Institute of Bioregulation,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kyushu University, Fukuoka, Japan</td>
</tr>
<tr>
<td>Xiaofei Yan</td>
<td>Xiaofei.Yan@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California, United States</td>
</tr>
<tr>
<td>Xiaobo Yang</td>
<td>yxbo21021@163.com</td>
<td>1) Department of Occupational Health and Environmental Health, School of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Health, Guangxi Medical University, Nanning, Guangxi, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Center for Genomic and Personalized Medicine, Guangxi Medical University,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanning, Guangxi, China</td>
</tr>
<tr>
<td>Jie Yao</td>
<td>Jie.Yao@cshs.org</td>
<td>1) Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California, United States</td>
</tr>
<tr>
<td>Terri L. Young</td>
<td>terri.young@duke.edu</td>
<td>1) Department of Ophthalmology, Duke University Medical Center, Durham, North</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carolina, United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Division of Neuroscience, Duke –National University of Singapore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graduate Medical School, Singapore, Singapore</td>
</tr>
<tr>
<td>Yi Zhang</td>
<td>zhangyidocater@Yahoo.com.cn</td>
<td>1) State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shanghai JiaoTong University School of Medicine, Shanghai, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Shanghai Institute of Hypertension, Shanghai, China</td>
</tr>
<tr>
<td>Wei Zheng</td>
<td>wei.zheng@vanderbilt.edu</td>
<td>1) Division of Epidemiology, Department of Medicine; Vanderbilt Epidemiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Center; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine, Nashville, Tennessee, United States</td>
</tr>
<tr>
<td>Xueya Zhou</td>
<td>xueyazhou@gmail.com</td>
<td>1) Bioinformatics Division, Tsinghua National Laboratory of Information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science and Technology, Beijing, China</td>
</tr>
<tr>
<td>Dingliang Zhu</td>
<td>zhudingliang@sibs.ac.cn</td>
<td>1) State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shanghai JiaoTong University School of Medicine, Shanghai, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Shanghai Institute of Hypertension, Shanghai, China</td>
</tr>
</tbody>
</table>
The CARDIoGRAMplusC4D Consortium

Affiliations

1. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
2. Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany.
3. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
4. Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
5. Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
6. Department of Health Sciences, University of Leicester, Leicester, UK.
7. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
8. Center for Non-Communicable Diseases, Karachi, Pakistan.
9. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
10. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
11. Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany.
12. Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden.
13. Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
14. Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Yeonje-ri, Chungwon-gun, Chungcheongbuk-do, Korea.
15. Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
16. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
17. Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
18. Estonian Genome Center, University of Tartu, Tartu, Estonia.
19. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
20. Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
21. Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
22. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
23. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
24. Clinical Trial Service Unit, University of Oxford, Oxford, UK.
25. Epidemiological Studies Unit, University of Oxford, Oxford, UK.
26. Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.
27. Ludwigshafen Risk and Cardiovascular Health (LURIC) Study, Freiburg, Germany.
28. Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
29. Department of Clinical Chemistry, Finnlab Laboratories, Tampere University Hospital, Tampere, Finland.
30. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland.
31. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK.
32. Genetic & Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden.
33. Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Section for Medicine, Umeå University, Umeå, Sweden.
34. Department of Odontology, Umeå University, Umeå, Sweden.
35. deCODE Genetics, Reykjavik, Iceland.
36. Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland.
38. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
39. Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
40. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA.
41. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
42. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
43. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
44. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
45. Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
46. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
47. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
48. Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.
49. Practice of Gynecology, Ulm University Medical Centre, Ulm, Germany.
50. Biotherapeutics and Bioinnovation Center, Pfizer, South San Francisco, California, USA.
51. Department of Dietetics–Nutrition, Harokopio University, Athens, Greece.
52. A list of members and affiliations appears in the Supplementary Note.
53. Klinik für Innere Medizin, Kreiskrankenhaus Rendsburg, Rendsburg, Germany.
54. Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
55. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
56. Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden.
The CKDGen Consortium (glomerular filtration rate of creatinine and chronic kidney disease data)

Affiliations

1. Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
2. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
3. Renal Division, Freiburg University Clinic, Freiburg, Germany
4. Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
5. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
6. Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
7. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
8. Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
9. Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany
10. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
11. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
12. Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
13. Department of Epidemiology and Preventive Medicine, University Hospital Regensburg, Regensburg, Germany
14. Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
15. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
16. Renal Division, Freiburg University Clinic, Freiburg, Germany
17. National Heart, Lung, and Blood Institute’s Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, USA
18. Division of Nephrology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
19. Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
20. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
21. Centre for Medical Systems Biology, Leiden, The Netherlands
22. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
23. Icelandic Heart Association, Research Institute, Kopavogur, Iceland
24. University of Iceland, Reykjavik, Iceland
25. Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, USA
26. Department of Epidemiology and Biostatistics and Department of Forensic Molecular Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
27. Clinical Research Branch, National Institute of Aging, Baltimore, Maryland, USA
28. University of Washington, Seattle, Washington, USA
29. Department of Developmental Biology, Stanford University, Stanford, California, USA
30. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
31. Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
32. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
33. Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
34. Department of Medicine, University of Leipzig, Leipzig, Germany
35. IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
36. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
37. Inserm UMR744, Institut Pasteur, Lille, France
38. Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
39. Centre for Information-based Medicine, Hunter Medical Research Institute, Newcastle, Australia
40. Institute of Genetics and Biophysics “Adriano-Buzzati Traverso”–CNR, Napoli, Italy
41. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
42. Swiss Institute of Bioinformatics, Lausanne, Switzerland
43. Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Centre for Laboratory Medicine Tampere Finn-Medi 2, Tampere, Finland
44. Estonian Genome Center of University of Tartu (EGCUT), Tartu, Estonia
45. Estonian Biocenter and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
46. Wellcome Trust Centre for Molecular Medicine, Clinical Research Centre, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
47. Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
48. Brigham and Women's Hospital, Boston, Massachusetts, USA
49. Institute of Population Genetics – CNR, Sassari, Italy
50. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
51. Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
52. Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria

doi:10.1038/nature14177

SUPPLEMENTARY INFORMATION
The CKDGen Consortium (urine albumin-to-creatinine ratio data)

Affiliations

1. Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany;
2. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts;
3. Department of Epidemiology and the Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland;
4. Department of Epidemiology and Preventive Medicine, Hennighausen University Medical Center, Regensburg, Germany;
5. Renal Division, University Hospital of Freiburg, Freiburg, Germany;
6. Division of Nephrology, University of Washington, Seattle, Washington;
7. Institute of Genetic Medicine, European Academy of Bolzano/Bozen (EURAC), Italy and Affiliated Institute of the University of Lübeck, Lübeck, Germany;
8. Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston Massachusetts;
9. Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany;
10. Department of Biostatistics, Boston University School of Public Health and NHLBI's Framingham Heart Study, Boston Massachusetts;
11. Cardiovascular Health Research Unit and Department of Biostatistics, University of Washington, Seattle, Washington;
12. University of Maryland School of Medicine, Baltimore, Maryland;
13. Medstar Research Institute, Baltimore, Maryland;
14. Clinical Research Branch, National Institute on Aging, Baltimore, Maryland; 15. Division of Nephrology, University of California, San Francisco Medical School and San Francisco VA Medical Center, San Francisco, California; 16. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; 17. Swiss Institute of Bioinformatics, Lausanne, Switzerland; 18. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; 19. NHLBI's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts; 20. Jackson State University, Jackson, Mississippi; 21. Loyola University, Maywood, Illinois; 22. Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 23. University of Iceland, Reykjavik, Iceland; 24. Icelandic Heart Association, Hjartavernd, Holtasamra, Kopavogur, Iceland; 25. Department of Biostatistical Sciences, Wake Forest University, Division of Public Health Sciences, Winston-Salem, North Carolina; 26. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota; 27. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland; 28. Innsbruck Medical University, Division of Genetic Epidemiology, Innsbruck, Austria; 29. Department of Medicine, University of Leipzig, Leipzig, Germany; 30. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; 31. Laboratory of Epidemiology, Demography, and Biometry, NIA, Bethesda, Maryland; 32. University of Maryland School of Medicine, Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland; 33. University of Maryland School of Medicine, Baltimore, Maryland; 34. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland; 35. University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 36. Human Genetics Center, University of Texas Health Science Center, Houston, Texas; 37. Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland; 38. Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland; 39. University of Pennsylvania Division of Cardiology, Perelman School of Medicine, Philadelphia, Pennsylvania; 40. University of Pennsylvania Renal Electrolyte and Hypertension Division, Philadelphia, Pennsylvania; 41. Departments of Epidemiology and Medicine, University of Washington, Seattle, Washington; 42. Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services and Group Health Research Institute, Group Health Cooperative, Seattle, Washington; 43. Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, California; 44. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 45. Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania; 46. Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts, Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; 47. Department of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts; 48. Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; 49. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; 50. St Olav University Hospital, Trondheim, Norway; 51. Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; 52. Molecular Medicine, Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; 53. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; 54. Zentrum für Innere Medizin, Klinik für Innere Medizin II - Kardiologie, Universität der Innsbrucker, Ulm, Ulm, Germany; 55. University Medical Center Mannheim, 5th Department of Medicine, Mannheim, Germany; 56. NEFR Unit Université Catholique de Louvain Medical School, Brussels, Belgium; 57. Center for Public Health Genomics, Charlottesville, Virginia; 58. Department of Internal Medicine, University Medical Center, Groningen, University of Groningen, Groningen, The Netherlands; 59. First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria; 60. Institute of Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany; 61. Institute of Pharmacology, University of Greifswald, Greifswald, Germany; 62. Clinic for Prosthodontic Dentistry, Gerostomatology and Material Science, University of Greifswald, Greifswald, Germany; 63. Nephrology Clinic for Internal Medicine A, University of Greifswald, Greifswald, Germany; 64. Institute for Community Medicine, University of Greifswald, Greifswald, Germany; 65. Wellcome Trust Centre for Human Genetics, and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom; 66. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, Scotland; 67. University of Michigan School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; 68. Gen-Info Ltd., Zagreb, Croatia; 69. Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; 70. Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, Scotland; 71. Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; 72. University of Maryland School of Medicine, Baltimore, Maryland; 73. Welch Center for Prevention, Epidemiology & Clinical Research, Johns Hopkins University, Baltimore, Maryland; 74. General Internal Medicine, University of California, San Francisco, San Francisco, California; 75. Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Prosserman Centre for Health Research, Toronto, Ontario, Canada; 76. The Hospital for Sick Children, Toronto, Ontario, Canada; 77. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany; 78. Klinikum Grosshadem, Munich, Germany; 79. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; 80. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.
The International ENDogene Consortium
Carl A Anderson1-2, Scott D Gordon3, Qin Guo4, Anjali K Henders3, Ann Lambert5, Sang Hong Lee6, Peter Kraft7, Stephen H Kennedy8, Stuart Macgregor3, Nicholas G Martin3, Stacey A Missmer9, Grant W Montgomery3, Andrew P Morris1, Dale R Nyholt3, Jodie N Painter5, Fenella Roseman5, Susan A Treloar8, Peter M Visscher9, Leanne Wallace5, Krina T Zondervan1,5.

Affiliations
1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
3Queensland Institute of Medical Research, Herston, Queensland, Australia.
4Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
5Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK.
6Harvard School of Public Health, Boston, Massachusetts, USA.
7Centre for Military and Veterans' Health, The University of Queensland, Mayne Medical School, Queensland, Australia.
8The University of Queensland Diamantina Institute, Princess Alexander Hospital, Brisbane, QLD 4102, Australia.
9The GENIE Consortium

Affiliations
1. Institute of Physiology, University of Greifswald, Greifswald, Germany.
2. University of Mississippi Division of Nephrology, University of Mississippi, Jackson, Mississippi.
3. University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, IUMSP, Lausanne, Switzerland; and
4. Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
The GLGC Consortium

Affiliations

1. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
3. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
4. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
5. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
6. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
7. Broad Institute, Program in Medical and Population Genetics, Cambridge, Massachusetts 02142, USA
8. Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
9. Science for Life Laboratory, Uppsala University, Uppsala, Sweden
10. Wellcome Trust Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, United Kingdom
11. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
12. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
13. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Ave., Boston MA 02215, USA
14. Harvard Medical School, Boston MA 02115, USA
15. Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
16. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
17. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, United Kingdom
18. Genomic Epidemiology Unit, Department of Medical Genetics, University of Oxford, South Parks Road, Oxford, OX3 7BN, United Kingdom
19. Medical Research Institute, Uppsala University, Uppsala, Sweden
20. Centre for Medical Systems Biology, Uppsala University, Uppsala, Sweden
21. Wellcome Trust Centre for Human Genetics, University of Oxford, South Parks Road, Oxford, OX3 7BN, United Kingdom
22. Centre for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
23. Estonian Genome Center of Tartu, Tartu, Estonia
24. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
25. Department of Genetics, Washington University School of Medicine, USA
26. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
27. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, United Kingdom
28. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
29. Hjelt Institute, Department of Public Health, University of Helsinki, Finland
30. Centre For Paediatric Epidemiology and Biostatistics/MRC Centre of Epidemiology for Child Health, University College of London Institute of Child Health, London, United Kingdom
31. Centre for Medical Systems Biology, Leiden, the Netherlands
32. Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
33. Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
34. Genome Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
35. Clinical Pharmacology, NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, London, UK
36. Biocenter Oulu, University of Oulu, Oulu, Finland
37. Institute of Health Sciences, University of Oulu, Finland
38. Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland
39. Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
40. Department of Internal Medicine II – Cardiology, University of Ulm Medical Centre, Ulm, Germany
41. Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 7-11, 68167 Mannheim, Germany
42. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
43. MRC Epidemiology Unit, Institute of Metabolic Science, Box 285, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
44. Department of Clinical Chemistry, Finnlab Laboratories, Tampere 33520, Finland
45. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
46. Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
47. Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland
48. Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany
49. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany
50. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Munich, Germany
51. Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
52. Division of Endocrinology, Children’s Hospital Boston, Massachusetts 02115, USA
115. Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, Philadelphia, PA 19104-5158, USA
116. Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, Philadelphia, PA 19104-5158, USA
117. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
118. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
119. Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging NCHA), Leiden, The Netherlands
120. Department of Clinical Sciences/Clinical Chemistry, University of Oulu, Oulu, Finland
121. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
122. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
123. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
124. School of International Development, University of East Anglia, Norwich NR4 7TJ, United Kingdom
125. University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
126. INSERM UMR 937, Pierre and Marie Curie University, Paris, France
127. Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
128. Lifelines Cohort Study, University of Groningen, University Medical Center Groningen, The Netherlands
129. Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
130. Department of Biological Psychology, VU Univ, Amsterdam, The Netherlands
131. Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
132. Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
133. Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Faculty of Medicine, Strasbourg, France
134. Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
135. Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy
136. Chemical Pathology, Department of Pathology, University of the West Indies, Mona, Kingston 7, Jamaica
137. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la Corniche 10, 1010 Lausanne, Switzerland
138. Division of Endocrinology and Diabetes, Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
139. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
140. Department of Medicine III, University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
141. Ministry of Health, Victoria, Republic of Seychelles
142. Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
143. Imperial College Healthcare NHS Trust, London, United Kingdom
144. Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
145. Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
146. Department of Preventive Medicine and Epidemiology, Loyola University Medical School, Maywood, Illinois 60153, USA
147. Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City, Philippines
148. Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France
149. Department of Psychiatry, University of California, Los Angeles, USA
150. Department of Clinical Sciences, Lund University, SE-20502, Malmö, Sweden
151. Department of Medicine, Helsinki University Hospital, FI-00029 Helsinki, Finland
152. Icelandic Heart Association, Kopavogur, Iceland
153. Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
154. Laboratory of Epidemiology, Demography, and Biometry, National Institute on Ageing, Bethesda, MD, USA
155. Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
156. Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Science, University College London, London, United Kingdom
157. Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
158. HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
159. Kaiser Permanente, Division of Research, Oakland, CA, USA
160. Unit of Primary Care, Oulu University Hospital, Oulu, Finland
161. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
162. Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, Finland
163. Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
164. Institute of Clinical Medicine, Department of Medicine, University of Oulu and Clinical Research Center, Oulu University Hospital, Oulu, Finland
165. National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, London, United Kingdom
166. Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, CA 94609, USA
167. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
168. Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark
169. Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
170. Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Finland
171. Department of Medical Sciences, Uppsala University, Uppsala, Sweden
172. Queensland Institute of Medical Research, Locked Bag 2000, Royal Brisbane Hospital, Queensland 4029, Australia
173. Synlab Academy, Synlab Services GmbH, Gottlieb-Daimler-Straße 25, 68165 Mannheim, Germany
174. Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica
175. U872 Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, 75006 Paris, France
176. Department of Medicine, Kuopio University Hospital, Kuopio, Finland
177. Department of Neurology, General Central Hospital, Bolzano, Italy
178. Department of Neurology, University of Lübeck, Lübeck, Germany
The ICBP Consortium

Steering Committee

Gonçalo Abecasis, Murielle Bochud, Mark Caulfield (co-chair), Aravinda Chakravarti, Dan Chamson, Georg Ehret (co-chair), Paul Elliott, Andrew Johnson, Louise Johnson, Martin Larson, Daniel Levy (co-chair), Patricia Munroe (co-chair), Christopher Newton-Cheh (co-chair), Paul O’Reilly, Walter Palmas, Bruce Psaty, Kenneth Rice, Albert Smith, Harold Snider, Martin Tobin, Cornelia Van Duijn, Germaine Verwoert.

Authors

Affiliations
1. Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2. Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1005 Lausanne, Switzerland
3. Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
4. Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
5. Department of Biostatistics, University of Washington, Seattle, WA, USA
6. Framingham Heart Study, Framingham, MA, USA
7. National Heart Lung, and Blood Institute, Bethesda, MD, USA
8. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
9. Harvard Medical School, Boston, MA, USA
10. Icelandic Heart Association, Kopavogur, Iceland
11. University of Iceland, Reykjavik, Iceland
12. Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK
13. Department of Medicine, University of Edinburgh, EH8 9AG, UK
14. Department of Internal Medicine, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
15. Netherlands Consortium for Healthy Aging (NCHA), Netherlands Genome Initiative (NGI), The Netherlands
16. Center for Population Studies, National Heart Lung, and Blood Institute, Bethesda, MD, USA
17. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
18. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
19. Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48103, USA
20. Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
21. Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
22. Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
23. MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge CB2 0QQ, UK
24. Centre National de Génotypage, Commissariat à L'Energie Atomique, Institut de Génomique, Evry, France
25. Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
26. University of Maryland School of Medicine, Baltimore, MD, USA, 21201, USA
27. Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
28. Department of Twin Research & Genetic Epidemiology, King's College London, UK
29. Cardiovascular Epidemiology and Genetics, Institut Municipal d'Investigacio Medica, Barcelona Biomedical Research Park, 08036 Barcelona, Spain
30. Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Viale Druso 1, 39100 Bolzano, Italy - Affiliated Institute of the University of Lübeck, Germany
31. Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
32. Department of Cardiovascular Medicine, The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
33. Clinical Research Branch, National Institute on Aging, Baltimore MD 21250, USA
34. Centre for Population Health Sciences, University of Edinburgh, EH8 9AG, UK
35. Centre for Population Health Sciences and Institute of Genetics and Molecular Medicine, College of Medicine and Vet Medicine, University of Edinburgh, EH8 9AG, UK
36. Croatian Centre for Global Health, University of Split, Croatia
37. Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
38. Amgen, 1 Kendall Square, Building 100, Cambridge, MA 02139, USA
39. Department of Clinical Sciences, Lund University, Malmö, Sweden
40. Department of Medicine, University of Verona, Italy
41. Eating Hospital, London, UB1 3HJ, UK
42. Department of Medicine, University of Mississippi Medical Center, USA
43. Genetic Epidemiology Group, Epidemiology and Public Health, UCL, London, WC1E 6BT, UK
44. Center for Genome Science, National Institute of Health, Seoul, Korea
45. Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
46. Departments of Epidemiology and Medicine, Johns Hopkins University, Baltimore MD, USA
47. Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500 007, India
48. Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
49. Department of Basic Medical Research and Education, and Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
50. Division of Community Health Sciences, St George's University of London, London, SW17 0RE, UK
51. Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
52. Division of Biostatistics and Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, USA
53. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
54. Department of Preventive Medicine and Epidemiology, Loyola University Medical School, Maywood, IL, USA
176. Unità Operativa Semplice Cardiologia, Divisioni di Medicina, Presidio Ospedaliero Santa Barbara, Iglesias, Italy
177. Computational Medicine Research Group, Institute of Clinical Medicine, University of Oulu and Biocenter Oulu, 90014 University of Oulu, Oulu, Finland
178. NMR Metabolomics Laboratory, Department of Biosciences, University of Eastern Finland, 70211 Kuopio, Finland
179. Department of Internal Medicine and Biocenter Oulu, Clinical Research Center, 90014 University of Oulu, Oulu, Finland
180. Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Helsinki, Finland
181. Department of Biomedical Engineering and Computational Science, School of Science and Technology, Aalto University, 00076 Aalto, Espoo, Finland
182. NUS Graduate School for Integrative Sciences & Engineering (NGS) Centre for Life Sciences (CeLS), Singapore, 117456, Singapore
183. Department of Internal Medicine B, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
184. Institute of Pharmacology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
185. Institute for Community Medicine, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
186. US57 Institut National de la Santé et de la Recherche Médicale, U1125 Institut National de la Recherche Agronomique, Université Paris 13, Bobigny, France
187. Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
188. Imperial College Cerebrovascular Unit (ICCRU), Imperial College, London, W6 8RF, UK
189. Faculty of Medicine, University of Split, Croatia
190. Department of Internal Medicine, Diabetology, and Nephrology, Medical University of Silesia, 41-800, Zabrze, Poland
191. Public Health Sciences section, Division of Community Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh, EH9 9AG, UK
192. School of Science and Engineering, University of Ballarat, 3353 Ballarat, Australia
193. Prevention and Care of Diabetes, Department of Medicine III, Medical Faculty Carl Gustav Carus at the Technical University of Dresden, 01307 Dresden, Germany
194. University Hospital Münster, Internal Medicine D, Münster, Germany
195. Department of Medical Statistics, Epidemiology and Medical Informatics, Andrija Stampar School of Public Health, University of Zagreb, Croatia
196. AstraZeneca R&D, 431 83 Mölndal, Sweden
197. Genetic Epidemiology & Biostatistics Platform, Ontario Institute for Cancer Research, Toronto
198. Samuel Lunenfeld Institute for Medical Research, University of Toronto, Canada
199. Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK
200. Department of Epidemiology and Public Health, Imperial College, Norfolk Place London W2 1PG, UK
201. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and the Department of Clinical Physiology, Turku University Hospital, Turku, 20521, Finland
202. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
203. Singapore Eye Research Institute, Singapore, 168751, Singapore
204. Department of Ophthalmology, National University of Singapore, Singapore, 119074, Singapore
205. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
206. Duke-National University of Singapore Graduate Medical School, Singapore, 169857, Singapore
207. Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
208. Department of Primary Care & Population Health, UCL, London, UK, NW3 2PF, UK
209. BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
210. Epidemiology Public Health, UCL, London, UK, WC1E 6BT, UK
211. Departments of Epidemiology, Biostatistics, and Medicine, Johns Hopkins University, Baltimore MD, USA
212. Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
213. Division of Cardiology, Brigham and Women’s Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
214. Geriatric Rehabilitation Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy
215. National Institute for Health and Welfare, Diabetes Prevention Unit, 00271 Helsinki, Finland
216. Hjelt Institute, Department of Public Health, University of Helsinki, 00140 Helsinki, Finland
217. South Ostrobothnia Central Hospital, 60220 Seinäjoki, Finland
218. Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, 28046 Madrid, Spain
219. Department of Neurology, General Central Hospital, 39100 Bolzano, Italy
220. CIBER Epidemiología y Salud Pública, 08003 Barcelona
221. Department of Medicine and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
222. Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
223. U872 Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Paris, France
224. Institute of Physiology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
225. Institute of Clinical Medicine/Obstetrics and Gynecology, University of Oulu, Finland
226. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
227. Human Genetics Center, 1200 Hermann Pressler, Suite E447 Houston, TX 77030, USA
228. Division of Epidemiology and Prevention, Boston University School of Medicine, Boston, MA, USA
229. Department of Mathematics, Boston University, Boston, MA, USA
230. Institute of Health Sciences, University of Oulu, BOX 5000, 90014 University of Oulu, Finland
231. Biocenter Oulu, University of Oulu, BOX 5000, 90014 University of Oulu, Finland
232. National Institute for Health and Welfare, Box 310, 90101 Oulu, Finland
233. MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
234. Centre of Medical Systems Biology (CMSB 1-2), NGI Erasmus Medical Center, Rotterdam, The Netherlands

The LifeLines Cohort Study
Behrooz Z Alizadeh (1), Rudolf A de Boer (2), H Marike Boezen (1), Marcel Bruinenberg (3), Lude Franke (4), Pim van der Harst (2), Hans L Hillegé (1,2), Melanie M van der Klauw (5), Gerjan Navis (6), Johan Ormel (7), Dirkje S Postma (8), Judith GM Rosmalen (7), Joris P Slaets (9), Harold Snieder (1), Ronald P Stolk (1), Bruce HR Wolffenbuttel (5), Cisca Wijmenga (4)

Affiliations
1. Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
2. Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands
3. LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, The Netherlands
4. Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
5. Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands
6. Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, The Netherlands
7. Interdisciplinary Center of Psychopathology and Emotion Regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, The Netherlands
8. Department of Pulmonology, University of Groningen, University Medical Center Groningen, The Netherlands
9. University Center for Geriatric Medicine, University of Groningen, University Medical Center Groningen, The Netherlands

The MAGIC Investigators

Affiliations

1. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
2. Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK.
4. Bioinformatics Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA.
5. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
6. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
7. Division of Endocrinology, Diabetes and Nutrition, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
8. Estonian Genome Center, University of Tartu, Tartu, Estonia.
9. Amerosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
10. Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
11. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
12. Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
13. Universite Lille Nord de France, Lille, France.
14. Center national de la recherche scientifique (CNRS) UMR8199, Institut Pasteur de Lille, France.
15. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.
16. Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden.
17. Department of Odontology, Umeå University, Umeå, Sweden.
18. Istituto di Ricerca Genetica e Biomedica, CNR, Monserato, Italy.
19. Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy.
20. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK.
21. Interuniversity Cardiology Institute of the Netherlands (ICIN), Durrer Center for Cardiogenetic Research, Utrecht, The Netherlands.
22. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
23. Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK.
The MIGEN Consortium Investigators

Manuscript preparation. Sekar Kathiresan1,2,3,4 (leader), Benjamin F Voight2,3,5, Shaun Purcell2,3,6, Kiran Musunuru1,2,3,4, Diego Ardissino7, Pier M Mannucci8, Sonia Anand9, James C Engert10, Nilesh J Samani11, Heribert Schunkert12, Jeanette Erdmann12, Muredach P Reilly13,14, Daniel J Rader13,14, Thomas Morgan15, John A Spertus16, Monika Stoll17, Domenico Girelli18, Pascal P McKeown19, Chris C Patterson19, David S Siscovick20, Christopher J O’Donnell1,4,21, Roberto Elosua22, Leena Peltonen23,24, Veikko Salomaa25, Stephen M Schwartz20,26, Olle Melander27, David Altshuler2,3,4,5,28

Heart Attack Risk in Puget Sound. Stephen M Schwartz20,26, David S Siscovick20, Jean Yee20,26, Yechiel Friedlander42

Registre Gironi del COR. Roberto Elosua22, Jaume Marrugat22, Gavin Lucas22, Isaac Subirana22, Joan Sala43, Rafael Ramos44

Massachusetts General Hospital Premature Coronary Artery Disease Study. Sekar Kathiresan1,2,3,4, James B Meigs4,45, Gordon Williams4,46, David M Nathan4,47, Calum A MacRae4, Christopher J O’Donnell1,4,21

FINRISK. Veikko Salomaa25, Aki S Havelinna25, Leena Peltonen23,24

Malmo Diet and Cancer Study. Olle Melander27, Goran Berglund48

Stage 1 data analysis. Benjamin F Voight2,3,5 (leader), Sekar Kathiresan1,2,3,4, Joel N Hirschhorn26, Rosanna Asselta49, Stefano Duga49, Marta Spreatifico4, Kiran Musunuru1,2,3,4, Mark J Daly2,3,4, Shaun Purcell2,3,6

Copy number variant analysis. Benjamin F Voight2,3,5, Shaun Purcell2,3,6, James Nemesh3, Joshua M Korn2,3,5, Steven A McCarroll2,3,5

Stage 1 phenotype data assembly. Stephen M Schwartz20,26 (leader), Jean Yee20,26, Sekar Kathiresan1,2,3,4, Gavin Lucas22, Isaac Subirana22, Roberto Elosua22

Stage 1 genome-wide genotyping. Aarti Surti3, Candace Guiducci3, Lauren Gianniny3, Daniel Mirel3, Melissa Parkin3, Noel Burt3, Stacey B Gabriel3 (leader)

Replication studies:

Wellcome Trust Case Control Consortium. Nilesh J Samani11, John R Thompson50, Peter S Braund11, Benjamin J Wright50, Anthony J Balmforth51, Stephen G Ball51, Alistair S Hall51, Wellcome Trust Case Control Consortium68

German MI Family Study I. Heribert Schunkert12, Jeanette Erdmann12, Patrick Linsel-Nitschke12, Wolfgang Lieb42, Andreas Ziegler52, Inke R König52, Christian Hengstenberg53, Marcus Fischer53, Klaus Stark53, Anika Grosshennig12,52, Michael Preuss1,2,52, H-Erich Wichmann54,55, Stefan Schreiber56

Cardiogenics. Heribert Schunkert12, Nilesh J Samani11, Jeanette Erdmann12, Willem Ouwehand57, Christian Hengstenberg53, Panos Deloukas23, Michael Scholz58, Francois Cambien59, Alison Goodall11, Cardiogenics58

PennCATH/MedSTAR. Muredach P Reilly13,14, Mingyao Li80, Zhen Chen60, Robert Wilensky13,14, William Matthai14, Atif Qasim14, Hakon H Hakonarson51, Joe Devaney62, Mary-Susan Burnett62, Augusto D Pichard62, Kenneth M Kent62, Lowell Satler62, Joseph M Lindsay62, Ron Waksman62,
SUPPLEMENTARY INFORMATION

Affiliations

1. Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
2. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
3. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
4. Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
5. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
6. Division of Cardiology, Irma and James H. Modell Department of Cardiovascular Medicine, New York University School of Medicine, New York, New York 10016, USA.
7. Division of Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Clinico Humanitas, 20089 Milan, Italy.
8. Division of Cardiology, Ospedale Borgo Trento, University of Verona, 37126 Verona, Italy.
9. Division of Cardiology, Ospedale di Livorno, 57100 Livorno, Italy.
10. Departments of Medicine and Human Genetics, McGill University, Montréal, H3A 1A1 Québec, Canada.
11. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, LE3 9QP, UK.
12. Medizinische Klinik II, Universität zu Lübeck, 23538 Lübeck, Germany.
13. The Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
14. The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
15. Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
16. Mid-America Heart Institute and University of Missouri-Kansas City, Kansas City, Missouri 64111, USA.
17. Leibniz-Institute for Arteriosclerosis Research, University Münster, 48149 Münster, Germany.
18. Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Belfast, BT12 6BJ, Northern Ireland, UK.
19. Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington 98101, USA.
20. Framingham Heart Study and National Heart, Lung, and Blood Institute, Framingham, Massachusetts 01702, USA.
22. Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.
23. Institute for Molecular Medicine, University of Helsinki, Helsinki 00029, Finland.
24. Chronic Disease Epidemiology Unit, Department of Health Promotion and Chronic Disease Prevention, National Public Health Institute, Helsinki 00385, Finland.
25. Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA.
26. Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö 20502, Sweden.
27. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
28. Division of Cardiology, Ospedale San Filippo Neri, 00135 Rome, Italy.
29. Division of Cardiology, Ospedale San Camillo, 00151 Rome, Italy.
30. Fondazione Istituto di Ricostruzione e Cura a Carattere Scientifico, Policlinico San Matteo, 27100 Pavia, Italy.
31. Vita-Salute San Raffaele University and San Raffaele Scientific Institute, 20132 Milan, Italy.
32. Department of Biochemistry and Molecular Biology, University of Ferrara, 44100 Ferrara, Italy.
33. Division of Cardiology, Ospedale Borgo Trento, University of Verona, 37126 Verona, Italy.
34. Division of Cardiology, Istituto di Ricostruzione e Cura a Carattere Scientifico, Istituto Clinico Humanitas, 20099 Milan, Italy.
35. Division of Cardiology, Ospedale di Livorno, 57100 Livorno, Italy.
36. Division of Cardiology, Ospedale di Rovigo, 45100 Rovigo, Italy.

SUPPLEMENTARY INFORMATION

do:10.1038/nature14177
Ingle6, Sarah Keildson 4, David Knowles7, Maria Krestyaninova8, Cecilia M. Lindgren4, Christopher Tsoka2, Alicja Wilk6, Tsun-Po Yang6, Krina T. Zondervan4, Durbin6, Daniel Glass 1, Elin Grundberg 1,6,13, Neelam Hassanali 3, Åsa K. Hedman 4, Catherine Montgomery5, Frank O. Nestle 12, Alexandra C. Nica 5, James Nisbet 6, Stephen O'Rahilly 9,10, E. Lowe9,10, Mark I. McCarthy3,4,11, Eshwar Meduri 1,6, Paola di Meglio12, Josine L. Min4, Stephen B. Alfonso Buil 5, Panos Deloukas 6, Emmanouil T. Dermitzakis 5, Antigone S. Dimas 4,5, Richard Soranzo1,6, Tim D. Spector 1, Gabriela Surdulescu 1, Mary E. Travers 3, Loukia Tsaprouni 6, Sophia

44. Unitat de Recerca i Unitat Docent de Medicina de Familia de Girona, IDIAP Jordi Gol, Institut Català de la Salut, 08007 Barcelona, Spain.
45. General Medicine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
46. Cardiovascular Endocrinology Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
47. Diabetes Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
48. Department of Clinical Sciences, Internal Medicine, University Hospital Malmö, Lund University, Malmö 20502, Sweden.
49. Department of Biology and Genetics for Medical Sciences, University of Milan, 20133 Milan, Italy.
50. Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK.
51. LIGHT Research Institute, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 3EX, UK.
52. Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, 23538 Lübeck, Germany.
53. Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, 93042 Regensburg, Germany.
54. Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany.
55. Institute of Medical Information Science, Biometry and Epidemiology, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany.
56. Institute für Klinische Molekularbiologie, Christian-Albrechts Universität, 24105 Kiel, Germany.
57. Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 2PT, UK.
58. Trium Analysis Online GmbH, 81677 Munich, Germany.
59. INSERM UMR_S 525, Universite Pierre et Marie Curie–Paris 6, Paris 75634, France.
60. Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
61. The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
62. Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC 20010, USA.
63. Institute for Heart and Circulation Research of the University of Witten/Herdecke, 44227 Dortmund, Germany.
64. Institute of Epidemiology and Social Medicine, University of Muenster, 48129 Muenster, Germany.

65. deCODE Genetics, 101 Reykjavik, Iceland.
66. Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
67. Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1, Canada.
68. A full list of members is provided in the Supplementary Note online of the original MIGEN paper.
69. Genetics Division and Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA.

The MuTHER Consortium
Kourosh R. Ahmadi1, Chrysanthi Ainali2, Amy Barrett3, Veronique Bataille4, Jordana T. Bell1,4, Alfonso Buil5, Panos Deloukas6, Emmanuel T. Dermitzakis5, Antigone S. Dimas1,5, Richard Durbin6, Daniel Glass1, Elin Grundberg1,6,13, Neelam Hassanali3, Åsa K. Hedman4, Catherine Ingle6, Sarah Keildson4, David Knowles4, Maria Krestyaninova8, Cecilia M. Lindgren4, Christopher E. Lowe8,9, Mark I. McCarthy3,4,11, Eshwar Meduri1,6, Paolo di Miglio12, Josine L. Min4, Stephen B. Montgomery5, Frank O. Nestle12, Alexandra C. Nica5, James Nisbet6, Stephen O’Rahilly9,10, Leopold Parts8, Simon Potter6, Magdalena Sekowska5, So-Youn Shin6, Perrin S. Small1,6, Nicole Soranzo1,6, Tim D. Spector1, Gabriela Surdulescu1, Mary E. Travers3, Loukia Tsaprouni6, Sophia Tsoka2, Alicja Wilk6, Tsun-Po Yang6, Krina T. Zondervan4

Affiliations
1. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
2. Department of Informatics, School of Natural and Mathematical Sciences, King's College London, Strand, London, UK
3. Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
4. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5. Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
6. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
7. University of Cambridge, Cambridge, UK
8. European Bioinformatics Institute, Hinxton, UK
9. University of Cambridge Metabolic Research Labs, Institute of Metabolic Science Addenbrooke’s Hospital Cambridge, UK
10. Cambridge NIHR Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
11. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
12. St. John's Institute of Dermatology, King's College London, London, UK
13. Department of Human Genetics, McGill University, McGill University and Genome Quebec Innovation Centre, H3A1A5 Montreal, Canada

The PAGE Consortium
Active PAGE investigators at the time of this analysis included:

Coordinating Center: Rutgers University, Piscataway, NJ: Tara Matise, Steve Buyske, Julia Higashio, Rasheeda Williams, Andrew Nato; University of Southern California, Los Angeles, CA: Jose Luis Ambite, Ewa Deelman.
NHGRI: Division of Genomic Medicine, NHGRI, NIH, Bethesda, MD: Teri Manolio, Lucia Hindorff.

CALiCo: University of North Carolina, Chapel Hill, NC: Kari E. North, Gerardo Heiss, Kira Taylor, Nora Franceschini, Christy Avery, Misa Graff, Danyu Lin, Miguel Quiroga; Baylor College of Medicine, Houston, TX: Barbara Cochran; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD: Linda Kao; Penn Medical Lab, Washington DC: Jason Umans; SW Foundation for Biomedical Research, San Antonio, TX: Shelley Cole, Jean MacCluer; University of Alabama at Birmingham, Birmingham, AB: Sharina Person; University of Minnesota, Minneapolis, MN: James Pankow, Myron Gross; University of Texas Health Science Center, Houston: Eric Boerwinkle, Myriam Fornage; University of Vermont, Burlington, VT: Peter Durda, Nancy Jenny; University of Washington, Seattle, WA: Bruce Patsy, Alice Arnold, Petra Buzkova.

MEC: University of Hawaii, Honolulu, HI: Loic Le Marchand, Lynne Wilkens, Lani Park, Maarit Tiirikainen, Laurence Kolonel, Unhee Lim, Iona Cheng, Hansong Wang, Ralph Shohet; Keck School of Medicine, University of Southern California, Los Angeles, CA: Christopher Haiman, Daniel Stram, Brian Henderson, Kristine Monroe, Fredrick Schumacher.

WHI: Fred Hutchinson Cancer Research Institute (FHCRC), Seattle, WA: Charles Kooperberg, Ulrike Peters, Garnet Anderson, Chris Carlson, Ross Prentice, Andrea LaCroix, Chunyan Wu, Cara Carty, Jian Gong, Stephanie Rosse, Alicia Young, Jeff Haessler, Jonathan Kocarnik, Yi Lin; Ohio State Medical Center, Columbus, OH: Rebecca Jackson; Translational Genomic Science Institute (TGen): David Duggan; University of Pittsburgh, Pittsburgh, PA: Lew Kuller.

The ReproGen Consortium (age at menopause data)

Affiliations
1. Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
2. Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
3. Peninsula Medical School, University of Exeter, UK
4. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5. Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
6. Harvard Medical School, Boston, USA
7. Department of Public Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
8. Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
9. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
10. deCODE Genetics, Reykjavik, Iceland
11. Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
12. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
13. Queensland Institute of Medical Research, Brisbane, Australia
14. Interfakultäres Institut für Genomforschung, Universität Greifswald, Germany
15. Estonian Genome Center, University of Tartu, Tartu, Estonia
16. Estonian Biocenter, Tartu, Estonia
17. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
18. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
19. Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
20. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
21. Broad Institute of Harvard and MIT, USA
22. Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
23. Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
24. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
25. Icelandic Heart Association, Kopavogur, Iceland
26. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
27. Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
28. Department of Biostatistics, Boston University School of Public Health, Boston Massachusetts, USA
29. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
30. Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
31. Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
32. Croatian Science Foundation, Zagreb, Croatia
33. Department of Medical Genetics, University of Lausanne, Switzerland
34. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital, Lausanne, Switzerland
35. Faculty of Medicine, University of Split, Split, Croatia
36. Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
37. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
38. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
39. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
40. Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
41. Sections of General Internal Medicine, Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
42. NHLBI Framingham Heart Study, Framingham, MA, USA
43. Institute for Maternal and Child Health, IRCCS “Burlo Garofolo” Trieste, Italy
44. University of Trieste, Trieste, Italy
45. Department of Psychology, The University of Edinburgh, Edinburgh, UK
46. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
47. EMGO+ Institute, VU Medical Centre, Amsterdam, The Netherlands
48. Center for Epidemiology and Biostatistics, University of Washington, Seattle, WA, USA
49. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
50. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
51. Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts, USA
52. MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
53. Washington University St. Louis, St. Louis, MO, USA
54. Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, USA
55. Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
56. Diagnostic Gene Laboratory, Eindhoven, the Netherlands
57. Swiss Institute of Bioinformatics, Switzerland
58. Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
59. Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
60. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
61. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
62. Department of Clinical Health Psychology, University of Tilburg, Tilburg, the Netherlands
63. Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
64. Group Health Research Institute, Group Health Cooperative, Seattle, WA USA
65. Cardiovascular Disease, Merck Research Laboratory, Rahway, NJ, USA
66. Department of Cardiac Biology, University of Washington, Seattle, WA, USA
67. Department of Genome Sciences, University of Washington, Seattle, WA, USA
68. Institute for Molecular Medicine, University of Washington, Seattle, WA, USA
69. Institute of Neurogenetics, University of Freiburg, Freiburg, Germany
70. Laboratory of Neurogenetics, National Institute for Ageing, Bethesda, MD, USA
71. Institute of Molecular Genetics-CNR, Pavia, Italy
72. Cardiovascular Genetics Research Unit, EA4373, Université Henri Poincaré - Nancy 1, Nancy, France
73. Department of Epidemiology, Emory University, Atlanta, GA, USA
74. Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA USA
75. Institute of Molecular Genetics, University of Groningen, University of Groningen, the Netherlands
76. Cardiovascular Genetics Research Unit, EE4373, Université Henri Poincaré - Nancy 1, Nancy, France
The ReproGen Consortium (age at menarche data)

Affiliations

1. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
2. Genetics of Complex Traits, Peninsula Medical School, University of Exeter, UK
3. deCODE Genetics, Reykjavik, Iceland
4. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
5. Harvard Medical School, Boston, Massachusetts, USA
6. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
7. Department of Public Health, Indiana University School of Medicine, Indianapolis, USA
8. Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, USA
9. The National Heart Lung and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
10. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
11. Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
12. Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Australia
13. The University of Queensland, Brisbane, Australia
14. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
15. Estonian Genome Center, University of Tartu, Tartu, Estonia
16. Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
17. Genotyping Core Facility, Estonian Biocenter, Tartu, Estonia
18. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
19. Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
20. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
21. Department of Genetics, University of Lausanne, Lausanne, Switzerland
22. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
23. Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
24. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
25. Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
26. Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
27. Icelandic Heart Association, Kopavogur, Iceland
28. University of Iceland, Reykjavik, Iceland
29. Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
30. Genetic-Epidemiology Unit, Department of Epidemiology and Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
31. Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
32. Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
33. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
34. MRC Human Genetics Unit; Institute of Genetics and Molecular Medicine, Western General Hospital; Edinburgh, UK
35. Scripps Genomic Medicine, The Scripps Translational Science Institute, and The Scripps Research Institute, La Jolla, CA, USA
36. Medical Genetics, Department of Reproductive Sciences and Development, University of Trieste, Trieste, Italy
37. Centre for Genetic Epidemiology and Biostatistics University of Western Australia, Australia
38. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
39. Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
40. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
41. Tulane University, New Orleans, LA, USA
42. Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
43. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
44. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
45. Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
46. Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
47. Sections of General Internal Medicine, Preventive Medicine and Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
48. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
49. MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine, University of Bristol, BS8 2BN, UK
50. Centre for Cancer Genetic Epidemiology, Departments of Oncology and Public Health and Primary Care, University of Cambridge, Cambridge, UK
51. MPRI, Merck & Co., Inc, 126 Lincoln Ave, Rahway, NJ 07065, USA
52. National Institute for Health and Welfare, Finland
53. Department of General Practice and Primary health Care, University of Helsinki, Finland
54. Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
55. Fondazione Sant’Anna Research Centre, Helsinki, Finland
56. Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
57. Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
58. Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
59. A full list of members is provided in the Supplementary Note
60. Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
61. Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
62. Laboratory of Neurogenetics, National Institute of Ageing, Bethesda, MD, USA
63. Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
64. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
65. NHLBI Center for Population Studies, Bethesda, MD, USA
66. Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, USA
67. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB2 0QQ, UK
68. Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, the Netherlands
70. Human Genetics, Genome Institute of Singapore, Singapore
71. Division of Cardiology, Boston University School of Medicine, USA
72. Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
73. Avon Longitudinal Study of Parents and Children (ALSPAC), Department of Social Medicine, University of Bristol, BS8 2BN, UK
74. Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
75. Department of Pediatrics, University of Iowa, Iowa City, IA, USA
76. Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
77. Department of Oral and Dental Science, University of Bristol, BS1 2LY, UK
78. Department of Medicine, Indiana University School of Medicine, Indiana, USA
79. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
80. Genetic and Molecular Epidemiology Laboratory, McMaster University, 1200 Main St. W MDCL Rm. 3206, Hamilton, ON, L8N3Z5, Canada
81. Amgen, 1 Kendall Square, Building 100, Cambridge, MA 02139, USA
82. Deceased
83. School of Women’s and Infants’ Health, The University of Western Australia, Australia
84. Gen Info Ltd, Zagreb, 10000; Croatia
85. Cardiovascular Disease, Merck Research Laboratory, Rahway, NJ 07065, USA
86. Croatian Centre for Global Health; University of Split Medical School; Split, 21000; Croatia
87. Gerontology Research Center, National Institute on Aging, Baltimore, Maryland, USA
88. Unito Geriatrico – Istituto Nazionale Ricovero e Cura per Anziani IRCCS – Rome, Italy
89. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
90. Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA
91. Division of Community Health Sciences, St. George’s, University of London, London, UK
92. Icelandic Cancer Registry, Reykjavik, Iceland
93. Departments of Epidemiology and Public Health and Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
94. Department of Internal Medicine, BH-10 Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
95. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
96. Klinikum Grosshadern, Munich, Germany
97. Molecular Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
98. Division of Cardiology, Brigham and Women’s Hospital
99. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
100. Department of Paediatrics, University of Cambridge, Cambridge, UK