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Abstract

It often happens that an efficient algorithm can be designed by considering some special properties of
the problem. In this short paper we describe a problem in twin zygosity determination that involves
a convolution of probability distributions. Our solution to this problem was to develop an algorithm
for counting in the base-3 or “ternary” number system. © 1998 Published by Elsevier Science B.V.
All rights reserved.
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1. Introduction

Human geneticists differentiate between two kinds of twins. If two twins are
derived from a single fertilised egg then they are called monozygote (MZ) twins.
Otherwise they are derived from two separate fertilised eggs, and are called
dizygotic (DZ) twins. These two kinds of twins differ in that MZ twins have exactly
the same genetic material as each other, whereas DZ twins are genetically as alike
to each other as ordinary brothers and sisters. The genetic overlap between two DZ
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twins is therefore 50%, on average. The greater genetic similarity of MZ twins as
compared to DZ twins is the basis of the twin method, which aims to evaluate the
relative importance of genetic and environmental factors in causing individual
differences in the population. The application of this method requires the zygosity
of each twin pair in a sample to be determined.

We have recently developed a program to determine twin zygosity according to
DNA marker data. In developing this program, we came across an interesting
problem that we solved by an algorithm for counting in the base-3 or “ternary”
number system.

2. The problem

Each person has two sets of chromosomes, one transmitted from the father and
the other from the mother. Each chromosome can be thought of as a linear array of
genes, each having a particular function. Interspersed between the genes are
“markers” that have no known biological function but are identical to genes in all
other respects. The order of genes (and markers) on a chromosome is fixed, so that
a particular gene is always found at the same position, called a locus. Each person
has two genes at each locus, one in the set of chromosomes inherited from the
father, and one in the set of chromosomes inherited from the mother. At each locus,
the genes can take several alternative forms, each of which is called an allele. Two
genes that are of the same form are said to be identical-by-state (IBS). Two genes
may be IBS because they are descended from the same ancestor and are replicates
of the same ancestral gene. This kind of gene sharing is called identity-by-descent
(IBD). Genes can also be IBS not because they are IBD but as a matter of
coincidence, as there are only a finite number of alleles at each locus.

MZ twins have both genes IBD at every locus in the genome. In contrast, DZ twins
have a 25% chance that both genes are IBD, a 50% chance that one gene is IBD, and
a 25% chance that no gene is IBD, at each locus. Our aim is to exploit this difference
between MZ and DZ twins in order to determine zygosity. If there is any locus at
which a twin pair is not IBS for both genes, then the twin pair can be designated as
DZ. On the other hand, even DZ twins have a non-zero probability of being 1BS for
both genes at every locus. We wish to calculate this probability, which gives an
indication of the proportion of DZ twins which might be misclassified as MZ.

The problem is complicated by the fact that the IBD status of a twin pair is not
directly available. Instead, the IBD status must be inferred indirectly from IBS
status. A few possible patterns of IBS relationships between two twins are shown in
Table 1.

Suppose that data are available for n markers on different chromosomes (so that
they are statistically independent). For convenience we imagine them as forming
a virtual line array.

1 2 aes . n
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Table 1

Possible patterns of IBS sharing between a twin
pair

Twinl Twin 2 IBS
11 11 2
12 12 2

11 12 1

12 23 1

i1 22 0

11 23 0
12 34 0

The number of markers IBS at each location is either 0, 1 or 2. The total number
of markers IBS can therefore range from 0 to 2n. For MZ twins, each locus must
have both markers IBS, so that the total number of markers IBS must be 2n, unless
there are errors in the data. For DZ twins, the probability distribution of the
number of alleles IBS at each locus is a function of the frequencies of the alleles. Let
the number of alleles at locus i be n;, and the allele frequencies be p;;, for
j =1, ...,n. The IBS distribution of the ith locus in DZ twins, denoted as g;o, i1,
qi» were derived by Lange (1986) as follows.

1
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From the IBS distributions of the n individual loci, we wish to obtain the
probability distribution of the total number of markers IBS for DZ twins. This will
enable us to determine the probability that a pair of DZ twins will have 2n markers
IBS, and therefore be misclassified as MZ. It also allows a goodness-of-fit test
between the observed IBS distribution of DZ twin pairs for a sample with an
expected IBS distribution, in order to assess whether the assumptions of the model
are valid.

3. The algorithms and implementation

Our problem is therefore to obtain the convolution of n probability distributions,
where n may be variable among twin pairs. Each component random variable has
three possible values, 0, 1, or 2, so that there are 3" joint outcomes. To consider all
these outcomes in standard programming languages requires n loop indices, one for
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each component random variable. Each index starts at 0 and ends at 2, and
represents the IBS status of a location. This generates 3" loops each representing
a joint outcome. Each loop involves the calculation of a total IBS value (i.e. the sum
of the IBS value of all locations) and a probability (i.e. the product of the IBS
probabilities of all locations). The probability of a certain total IBS value is the sum
of the probabilities of all outcomes associated with that total IBS value. This,
however, presents us with the problem that the number of loop indices is both large
and variable. Most high-level programming languages can only handle a limited
number of loop indices.

However, on closer examination of this problem we find that we can take
advantage of the regular pattern of the indices. The 3" possibilities can be enu-
merated by counting through a base-3 (or “ternary”) number sequence. For n = 2
the sequence is 00, 01, 02, 10, 11, 12, 20, 21, 22. In other words, the n digit of each
“ternary” number can be used to represent the IBS status of the n marker loci. Two
alternative algorithms are immediate.

3.1. Algorithm 1

We first get the most significant trinary digit and subtract the number it
represents to get the remainder. We then proceed to get the ternary digit for the
remainder and so on until the remainder is less than 3. For example, decimal
number 80 is less than 3* = 81 but bigger than 3* = 27. the most significant ternary
digit is therefore 2 in the place of 3°. We then subtract 2 x 3% and get decimal 26 that
falls within interval [32, 3*], and so we have 2 in the place of 32, Repeating the same
procedures four times we obtain the ternary number 2222. We can store numbers
that are powers of three in advance, so that we only need to compute them once.

3.2, Algorithm 2

We simply count directly in base 3. Starting from 0 and increasing 1 at a time
until the required number is obtained. Each increment of 1 involves adding 1 to the
least significant digit and “carrying over” to the next digit if the digit exceeds 2.

Subroutines implementing the above algorithms are appended. We present the
program in QBASIC, as it is included in nearly all the MS-DOS versions and hosts
many features that traditional programming languages do not normally have.

Subroutine 1 is more suitable for converting an arbitrary decimal number to base
3. It is a “greedy-type” algorithm. However, it is restricted by machine precision to
n = 33 for double precision and n = 15 for single precision.

Subroutine 2 is easily applied to number any base and is particularly efficient for
generating a consecutive sequence of numbers, as is required for our current
problem. Besides, it may serve as a simple example of recursive algorithm. Better
known examples of recursive algorithms include the calculation of factorials, Hanoi
tower and related routines.
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Table 2
IBS distributions for DZ twins

IBS Probability Truncated Probability
0 0.0000001 0.0000001
1 0.0000047 0.0000047
2 0.0000745 0.0000746
3 0.0007020 0.0007026
4 0.0043547 0.0043587
5 0.0187297 0.0187469
6 0.0573779 0.0574304
7 0.1268247 0.1269407
8 0.2030294 0.2032151
9 0.2345095 0.2347241
10 0.1929296 0.1931061
11 0.1100498 0.1101505
12 0.0413198 0.0413576
13 0.0091795 0.0091879
14 0.0009140 *** Truncated ****

Using either of these routines, we can easily enumerate all the 3" possibilities,
recording the IBS value as well as the probability of each instance. The IBS
distribution is obtained by summarizing the probabilities over all instances that
produce the same IBS value, for each possible IBS value.

Note that the digits from the two subroutines differ by one digit shift and that
the DECLARE statements in both routines could be added by QBASIC auto-
matically.

4. An example

For illustration we give an example of seven markers. Table 2 shows the
calculated IBS probabilities for DZ twins given these seven loci each with five
alleles of equal frequencies. The probability of a DZ twin pair sharing all 2n
markers IBS provides an indication of how likely it is for a DZ twin pair to be
misclassified as MZ. In this example, the chance that a DZ twin pair will share all
2n markers IBS and be misclassified as MZ is less than one in a thousand. As
a check of model assumptions (such as the random mating and the absence of
genotyping errors), the observed IBS distribution of the sample, given that IBS is
incomplete, can be compared to the theoretical truncated IBS distribution, which is
obtained by dividing each IBS probability (for IBS of between 0 and 2n — 1) by the
probability that IBS is less than 2n. The statistical significance of the differences
between the observed and theoretical distribution can be evaluated by the usual
Pearson Chi-square test.
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5. Other applications

These algorithms can be used to obtain the probability distribution of the sum of
a finite number of discrete random variables X, X,' ..., X,, provided that the
possible values that each random variable can take are the same.
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Appendix A

Here we give the QBASIC source and sample driver for each routine. Interested
readers may change them to other form, say C, without loss of generality. This also
applies to the situation when we have discrete probabilities with similar pattern.

Subroutine 1.

SUB radix (y, n, save, d)
REM ZHAO JH 16/10/96 (UK)
PRINT “# # =", y
X =y
FORi=1TOn
dii)=0
NEXT
kmax =0
FORi=1TOn
FORk=0TOn
IF x = save(k) GOTO LO
IF x > save(k) AND x < save(k + 1) GOTO L1
NEXT
LO: IF kmax < k THEN kmax = k
dk+1)=1
GOTO done
L1: IF kmax < k THEN kmax = k
REM change here to allow for other base
IF x > 2 * save(k) THEN j =2 ELSEIF k=0 THEN j=x ELSEj =1
x =x — ] * save(k)

dk+1)=j
IF x =0 THEN GOTO done
NEXT

done:
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sum =0

FOR i = kmax TO 0 STEP — 1
sum = sum + d(i + 1) * save(i)
PRINTUSING“# # # # # HH B HFFHHHF A A HAHAAAHAHAHAHAHAH#
HHEBHAHRHAFHBHEFHFHFAHE,
d(i + 1); save(i); d(i + 1) * save(i); sum

NEXT

END SUB

Subroutine 2.

SUB digit (radix1, n, d, i)
REM subroutine to express decimal number to (radix1 + 1)-base
REM Zhao JH, 21/10/96 (UK)
IF d(i) < radix]1 THEN
diiy=d(@) + 1
GOTO ok
ELSE
di)=0
di+1)=di+1)+1
IF d(i + 1) < radix1 GOTO ok
END IF
CALL digit(radixl, n, d, i + 1)
ok:
END SUB

Sample driver program for Subroutine 1.

DECLARE SUB radix (y#, n!, save#, d#)
DEFDBL A-H, O-Z
n =35 maxn=3"n
DIM SHARED save(0 TO n), d(0 TO n + 1)
FORi=0TOn
save(i) = 3*i
NEXT
FOR i=25TO 35
PRINT “power i ="; i

x=3"—-1

CALL radix(x, n, save, d)
NEXT
END

Key word SHARED is simply used to communicate array with the subroutines,
the lower bounds of the arrays are explicitly declared as starting from 0. As noted
above, we calculated the powers of three in advance to relieve the computing
burden.
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Sample driver program for Subroutine 2.

DECLARE SUB digit (radix!, n!, d!, i!)
n =4 radix = 3: maxn =radix " n— 1
DIM SHARED d(0 TO n)

FORi=0TOn
di)=0

NEXT

FOR i =1 TO maxn
X =i

PRINT USING “x = # # # # # # #7;
CALL digit(radix — 1, n, d, 0)
FORj=n—1TO 0STEP — 1

PRINT USING “# #™; d(j);
NEXT
PRINT
NEXT
END
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